Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_7_a6, author = {Yu. A. Farkov and S. A. Stroganov}, title = {The use of discrete dyadic wavelets in image processing}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {57--66}, publisher = {mathdoc}, number = {7}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_7_a6/} }
Yu. A. Farkov; S. A. Stroganov. The use of discrete dyadic wavelets in image processing. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2011), pp. 57-66. http://geodesic.mathdoc.fr/item/IVM_2011_7_a6/
[1] Lang W. C., “Wavelet analysis on the Cantor dyadic group”, Houston J. Math., 24:3 (1998), 533–544 | MR | Zbl
[2] Farkov Yu. A., “Ortogonalnye veivlety s kompaktnymi nositelyami na lokalno kompaktnykh abelevykh gruppakh”, Izv. RAN. Ser. matem., 69:3 (2005), 193–220 | MR | Zbl
[3] Farkov Yu. A., “On wavelets related to the Walsh series”, J. Approx. Theory, 161:1 (2009), 259–279 | DOI | MR | Zbl
[4] Rodionov E. A., Farkov Yu. A., “Otsenki gladkosti diadicheskikh ortogonalnykh vspleskov tipa Dobeshi”, Matem. zametki, 86:3 (2009), 429–444 | MR | Zbl
[5] Farkov Yu. A., “Biortogonalnye vspleski na gruppakh Vilenkina”, Tr. matem. in-ta im. V. A. Steklova, 265, 2009, 110–124 | MR | Zbl
[6] Schipp F., Wade W. R., Simon P., Walsh series: an introduction to dyadic harmonic analysis, Adam Hilger, N.Y., 1990 | MR | Zbl
[7] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: teoriya i primeneniya, Izd-vo LKI, M., 2008
[8] Zalmanzon L. A., Preobrazovaniya Fure, Uolsha, Khaara i ikh primenenie v upravlenii, svyazi i drugikh oblastyakh, Nauka, M., 1983 | MR
[9] Freizer M., Vvedenie v veivlety v svete lineinoi algebry, BINOM. Laboratoriya znanii, M., 2008
[10] Broughton S. A., Bryan K. M., Discrete Fourier analysis and wavelets. Applications to signal and image processing, John Wiley Sons, Hoboken, NJ, 2009 | MR | Zbl
[11] Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001
[12] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2006 | MR
[13] Malozemov V. N., Masharskii S. M., “Obobschennye veivletnye bazisy, svyazannye s diskretnym preobrazovaniem Vilenkina–Krestensona”, Algebra i analiz, 13:1 (2001), 111–157 | MR | Zbl
[14] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005
[15] Uelstid S., Fraktaly i veivlety dlya szhatiya izobrazhenii v deistvii, Izd-vo Triumf, M., 2003
[16] Hereford J., Roach D. W., Pigford R., “Image compression using parameterized wavelets with feedback”, Independent Component Analysis, Wavelets and Neural Networks, Proc. SPIE, 5102, 2003, 267–277
[17] Holland J. H., Adaptation in natural and artificial systems. An introductory analysis with applications to biology, control, and artificial intelligence, University of Michigan Press, Ann Arbor, 1975 | MR