@article{IVM_2011_6_a7,
author = {A. A. Koshelev},
title = {The best approximation of {Laplace} operator by linear bounded operators in the space $L_p$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {63--74},
year = {2011},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_6_a7/}
}
A. A. Koshelev. The best approximation of Laplace operator by linear bounded operators in the space $L_p$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 63-74. http://geodesic.mathdoc.fr/item/IVM_2011_6_a7/
[1] Shilov G. E., Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965 | MR
[2] Stechkin S. B., “Nailuchshee priblizhenie lineinykh operatorov”, Matem. zametki, 1:2 (1967), 137–148 | MR | Zbl
[3] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, UMN, 51:6 (1996), 89–124 | MR | Zbl
[4] Arestov V. V., Gabushin V. N., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi”, Izv. vuzov. Matematika, 1995, no. 11, 42–68 | MR | Zbl
[5] Kounchev O., “Extremizers for the multivariate Landau–Kolmogorov inequality”, Multivariate Approximation. Recent trends and results, 101 (1997), 123–132 | MR | Zbl
[6] Koshelev A., “Best approximation of the Laplace operator on the plane by linear bounded operators”, East J. Approx., 14:2 (2008), 29–40 | MR
[7] Taikov L. V., Subbotin Yu. N., “Nailuchshee priblizhenie operatora differentsirovaniya v prostranstve $L_2$”, Matem. zametki, 3:2 (1968), 157–164 | MR | Zbl
[8] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl