The best approximation of Laplace operator by linear bounded operators in the space $L_p$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 63-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain close two-sided estimates for the best approximation of the Laplace operator by linear bounded operators on the class of functions, for which the second degree of the Laplace operator belongs to the $L_p$-space. We estimate the best constant in the corresponding Kolmogorov inequality and the error of the optimal recovery of values of the Laplace operator on functions from this class defined with an error. In a particular case ($p=2$) we solve all three problems exactly.
Keywords: Laplace operator, approximation of unbounded operators by bounded ones, Stechkin problem, Kolmogorov inequality, optimal recovery.
@article{IVM_2011_6_a7,
     author = {A. A. Koshelev},
     title = {The best approximation of {Laplace} operator by linear bounded operators in the space $L_p$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--74},
     publisher = {mathdoc},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_6_a7/}
}
TY  - JOUR
AU  - A. A. Koshelev
TI  - The best approximation of Laplace operator by linear bounded operators in the space $L_p$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 63
EP  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_6_a7/
LA  - ru
ID  - IVM_2011_6_a7
ER  - 
%0 Journal Article
%A A. A. Koshelev
%T The best approximation of Laplace operator by linear bounded operators in the space $L_p$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 63-74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_6_a7/
%G ru
%F IVM_2011_6_a7
A. A. Koshelev. The best approximation of Laplace operator by linear bounded operators in the space $L_p$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 63-74. http://geodesic.mathdoc.fr/item/IVM_2011_6_a7/

[1] Shilov G. E., Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965 | MR

[2] Stechkin S. B., “Nailuchshee priblizhenie lineinykh operatorov”, Matem. zametki, 1:2 (1967), 137–148 | MR | Zbl

[3] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, UMN, 51:6 (1996), 89–124 | MR | Zbl

[4] Arestov V. V., Gabushin V. N., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi”, Izv. vuzov. Matematika, 1995, no. 11, 42–68 | MR | Zbl

[5] Kounchev O., “Extremizers for the multivariate Landau–Kolmogorov inequality”, Multivariate Approximation. Recent trends and results, 101 (1997), 123–132 | MR | Zbl

[6] Koshelev A., “Best approximation of the Laplace operator on the plane by linear bounded operators”, East J. Approx., 14:2 (2008), 29–40 | MR

[7] Taikov L. V., Subbotin Yu. N., “Nailuchshee priblizhenie operatora differentsirovaniya v prostranstve $L_2$”, Matem. zametki, 3:2 (1968), 157–164 | MR | Zbl

[8] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl