A study on generalized quasi-power increasing sequences
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 20-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we have proved a general theorem dealing with an application of quasi $(\beta-\sigma)$-power increasing sequences. This theorem also includes several new results.
Keywords: absolute summability, power increasing sequences, infinite series, Hölder's inequality, sequence of spaces.
@article{IVM_2011_6_a2,
     author = {H. Bor},
     title = {A study on generalized quasi-power increasing sequences},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {20--24},
     publisher = {mathdoc},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_6_a2/}
}
TY  - JOUR
AU  - H. Bor
TI  - A study on generalized quasi-power increasing sequences
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 20
EP  - 24
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_6_a2/
LA  - ru
ID  - IVM_2011_6_a2
ER  - 
%0 Journal Article
%A H. Bor
%T A study on generalized quasi-power increasing sequences
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 20-24
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_6_a2/
%G ru
%F IVM_2011_6_a2
H. Bor. A study on generalized quasi-power increasing sequences. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2011), pp. 20-24. http://geodesic.mathdoc.fr/item/IVM_2011_6_a2/

[1] Aljancic S., Arandelovic D., “$O$-regularly varying functions”, Publ. Inst. Math., 22 (1977), 5–22 | MR | Zbl

[2] Boos J., Classical and modern methods in summability, Oxford Univ. Press Inc., New York, 2000 | MR | Zbl

[3] Leindler L., “A new application of quasi power increasing sequences”, Publ. Math. Debrecen, 58 (2001), 791–796 | MR | Zbl

[4] Borwein D., “Theorems on some methods of summability”, Quart. J. Math. Oxford Ser. (2), 9 (1958), 310–316 | DOI | MR | Zbl

[5] Bor H., “A newer application of almost increasing sequences”, Pac. J. Appl. Math., 2:3 (2009), 29–33 | MR

[6] Das G., “A Tauberian theorem for absolute summability”, Proc. Camb. Phil. Soc., 67 (1970), 321–326 | DOI | MR | Zbl

[7] Balcı M., “Absolute $\varphi$-summability factors”, Comm. Fac. Sci. Univ. Ankara Ser. $A_1$, 29 (1980), 63–80 | MR

[8] Flett T. M., “On an extension of absolute summability and some theorems of Littlewood and Paley”, Proc. London Math. Soc., 7 (1957), 113–141 | DOI | MR | Zbl

[9] Flett T. M., “Some more theorems concerning the absolute summability of Fourier series”, Proc. London Math. Soc., 8 (1958), 357–387 | DOI | MR | Zbl

[10] Bor H., “A new application of power increasing sequences”, Rev. Union Mat. Argentina (to appear)

[11] Sulaiman W. T., “A study on absolute factors for a triangular matrix”, Bull. Math. Anal. Appl., 1:3 (2009), 1–9 | MR

[12] Bosanquet L. S., “A mean value theorem”, J. London Math. Soc., 16 (1941), 146–148 | DOI | MR | Zbl

[13] Bor H., Srivastava H. M., “Almost increasing sequences and their applications”, Int. J. Pure Appl. Math., 3 (2002), 29–35 | MR | Zbl