Small solutions of nonlinear differential equations near branching points
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 53-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct parametric families of small branching solutions to nonlinear differential equations of the $n$th order near branching points. We use methods of the analytical theory of branching solutions of nonlinear equations and the theory of differential equations with a regular singular point. We illustrate the general existence theorems with an example of a nonlinear differential equation in a certain magnetic insulation problem.
Keywords: Newton diagram, Jordan forms, Euler operator, branching, contracted mapping.
@article{IVM_2011_5_a6,
     author = {N. A. Sidorov and D. N. Sidorov},
     title = {Small solutions of nonlinear differential equations near branching points},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {53--61},
     publisher = {mathdoc},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_5_a6/}
}
TY  - JOUR
AU  - N. A. Sidorov
AU  - D. N. Sidorov
TI  - Small solutions of nonlinear differential equations near branching points
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 53
EP  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_5_a6/
LA  - ru
ID  - IVM_2011_5_a6
ER  - 
%0 Journal Article
%A N. A. Sidorov
%A D. N. Sidorov
%T Small solutions of nonlinear differential equations near branching points
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 53-61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_5_a6/
%G ru
%F IVM_2011_5_a6
N. A. Sidorov; D. N. Sidorov. Small solutions of nonlinear differential equations near branching points. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 53-61. http://geodesic.mathdoc.fr/item/IVM_2011_5_a6/

[1] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov–Schmidt methods in nonlinear analysis and applications, Kluwer Academic Publ., Dordrecht, 2002 | MR | Zbl

[2] Bryuno A. D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Fizmatlit, M., 1998 | MR | Zbl

[3] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht, 2003 | MR | Zbl

[4] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR | Zbl

[5] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[6] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996 | MR | Zbl

[7] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya resheniya nelineinykh uravnenii, Nauka, M., 1969 | MR

[8] Abdallah N. B., Degond. P., Mehats F., Mathematical models of magnetic insulation, Rapport interne No 97.20, MIP – Université Poul Sabatier, Toulouse, France, 1997

[9] Trenogin V. A., Funktsionalnyi analiz, Fizmatlit, M., 2007

[10] Erugin N. P., Kniga dlya chteniya po obschemu kursu differentsialnykh uravnenii, Nauka i Tekhnika, Minsk, 1972 | MR | Zbl

[11] Koddington E. A., Levinson H., Teoriya obyknovennykh differentsialnykh uravnenii, In. lit., M., 1958

[12] Sidorov N. A., “O vetvlenii reshenii differentsialnykh uravnenii s vyrozhdeniem”, Differents. uravneniya, 9:8 (1973), 1464–1481 | MR | Zbl