Gaussian white noise with trajectories in the space~$\mathcal S'(H)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct a Gaussian white noise with trajectories in the space of generalized functions over $\mathcal S$ with values in a separable Hilbert space $H$. We obtain a solution to the Cauchy problem for a linear operator-differential equation with the additive white noise as a generalized random process with trajectories in the space of exponential distributions. We prove existence of the solution in the case when the operator coefficient $A$ generates a $C_0$ semigroup and in the case when $A$ generates an integrated semigroup.
Keywords: Gaussian white noise, generalized random process, semigroups of bounded operators.
@article{IVM_2011_5_a0,
     author = {M. A. Alshanskii},
     title = {Gaussian white noise with trajectories in the space~$\mathcal S'(H)$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_5_a0/}
}
TY  - JOUR
AU  - M. A. Alshanskii
TI  - Gaussian white noise with trajectories in the space~$\mathcal S'(H)$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 3
EP  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_5_a0/
LA  - ru
ID  - IVM_2011_5_a0
ER  - 
%0 Journal Article
%A M. A. Alshanskii
%T Gaussian white noise with trajectories in the space~$\mathcal S'(H)$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 3-11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_5_a0/
%G ru
%F IVM_2011_5_a0
M. A. Alshanskii. Gaussian white noise with trajectories in the space~$\mathcal S'(H)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2011), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2011_5_a0/