Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_4_a2, author = {A. A. Boiko and D. B. Ziyatdinov and Sh. T. Ishmukhametov}, title = {One approach to factorization of positive integers}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {15--22}, publisher = {mathdoc}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_4_a2/} }
TY - JOUR AU - A. A. Boiko AU - D. B. Ziyatdinov AU - Sh. T. Ishmukhametov TI - One approach to factorization of positive integers JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 15 EP - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_4_a2/ LA - ru ID - IVM_2011_4_a2 ER -
A. A. Boiko; D. B. Ziyatdinov; Sh. T. Ishmukhametov. One approach to factorization of positive integers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2011), pp. 15-22. http://geodesic.mathdoc.fr/item/IVM_2011_4_a2/
[1] Pomerance C., “Smooth numbers and the quadratic sieve”, Algorithmic Number Theory, 44, MSRI publication, Cambridge, 2008, 69–82 | MR
[2] Briggs Matthew E., An introduction to the general number field sieve, Master's Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1998
[3] Lenstra A., Lenstra H. (Eds.), The development of the number field sieve, Lecture Notes in Math., 1554, Springer-Verlag, Berlin, 1993 | MR
[4] Boender H., The number of relations in the quadratic sieve algorithm, NM-R9622, The Netherlands, 1996
[5] Cheremushkin A. V., Lektsii po arifmeticheskim funktsiyam v kriptografii, MTsNMO, M., 2002