One approach to factorization of positive integers
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2011), pp. 15-22
Cet article a éte moissonné depuis la source Math-Net.Ru
Factorization of positive integers into primes is a hard computational task. Its complexity lies in the base of the most popular method of cryptography, the RSA method. In this paper we propose a new technique in a factorization procedure which combines ideas of the Number Field Sieve (NFS) and the Quadratic Sieve (QS) in a special manner.
Mots-clés :
QS, NFS
Keywords: number field sieve, quadratic sieve, factorization.
Keywords: number field sieve, quadratic sieve, factorization.
@article{IVM_2011_4_a2,
author = {A. A. Boiko and D. B. Ziyatdinov and Sh. T. Ishmukhametov},
title = {One approach to factorization of positive integers},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {15--22},
year = {2011},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_4_a2/}
}
A. A. Boiko; D. B. Ziyatdinov; Sh. T. Ishmukhametov. One approach to factorization of positive integers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2011), pp. 15-22. http://geodesic.mathdoc.fr/item/IVM_2011_4_a2/
[1] Pomerance C., “Smooth numbers and the quadratic sieve”, Algorithmic Number Theory, 44, MSRI publication, Cambridge, 2008, 69–82 | MR
[2] Briggs Matthew E., An introduction to the general number field sieve, Master's Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1998
[3] Lenstra A., Lenstra H. (Eds.), The development of the number field sieve, Lecture Notes in Math., 1554, Springer-Verlag, Berlin, 1993 | MR
[4] Boender H., The number of relations in the quadratic sieve algorithm, NM-R9622, The Netherlands, 1996
[5] Cheremushkin A. V., Lektsii po arifmeticheskim funktsiyam v kriptografii, MTsNMO, M., 2002