One approach to factorization of positive integers
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2011), pp. 15-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Factorization of positive integers into primes is a hard computational task. Its complexity lies in the base of the most popular method of cryptography, the RSA method. In this paper we propose a new technique in a factorization procedure which combines ideas of the Number Field Sieve (NFS) and the Quadratic Sieve (QS) in a special manner.
Mots-clés : QS, NFS
Keywords: number field sieve, quadratic sieve, factorization.
@article{IVM_2011_4_a2,
     author = {A. A. Boiko and D. B. Ziyatdinov and Sh. T. Ishmukhametov},
     title = {One approach to factorization of positive integers},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--22},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_4_a2/}
}
TY  - JOUR
AU  - A. A. Boiko
AU  - D. B. Ziyatdinov
AU  - Sh. T. Ishmukhametov
TI  - One approach to factorization of positive integers
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 15
EP  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_4_a2/
LA  - ru
ID  - IVM_2011_4_a2
ER  - 
%0 Journal Article
%A A. A. Boiko
%A D. B. Ziyatdinov
%A Sh. T. Ishmukhametov
%T One approach to factorization of positive integers
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 15-22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_4_a2/
%G ru
%F IVM_2011_4_a2
A. A. Boiko; D. B. Ziyatdinov; Sh. T. Ishmukhametov. One approach to factorization of positive integers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2011), pp. 15-22. http://geodesic.mathdoc.fr/item/IVM_2011_4_a2/

[1] Pomerance C., “Smooth numbers and the quadratic sieve”, Algorithmic Number Theory, 44, MSRI publication, Cambridge, 2008, 69–82 | MR

[2] Briggs Matthew E., An introduction to the general number field sieve, Master's Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1998

[3] Lenstra A., Lenstra H. (Eds.), The development of the number field sieve, Lecture Notes in Math., 1554, Springer-Verlag, Berlin, 1993 | MR

[4] Boender H., The number of relations in the quadratic sieve algorithm, NM-R9622, The Netherlands, 1996

[5] Cheremushkin A. V., Lektsii po arifmeticheskim funktsiyam v kriptografii, MTsNMO, M., 2002