The Shilov boundary and the Gelfand spectrum of algebras of generalized analytic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 41-49

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be discrete abelian semigroup with unit and consellations. We show that the strong boundary and the Shilov boundary of the algebra of generalized analytic functions on the semigroup $\widehat S$ of semicharacters of $S$ are unions of some maximal subgroups of $\widehat S$. If $S$ does not contain nontrivial simple ideals, then both boundaries coincide with the character group of $S$. In this case, the Gelfand spectrum of the algebra under consideration has been calculated.
Keywords: Shilov boundary, Gelfand spectrum, uniform algebra, generalized analytic function.
@article{IVM_2011_3_a4,
     author = {A. R. Mirotin},
     title = {The {Shilov} boundary and the {Gelfand} spectrum of algebras of generalized analytic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--49},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_3_a4/}
}
TY  - JOUR
AU  - A. R. Mirotin
TI  - The Shilov boundary and the Gelfand spectrum of algebras of generalized analytic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 41
EP  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_3_a4/
LA  - ru
ID  - IVM_2011_3_a4
ER  - 
%0 Journal Article
%A A. R. Mirotin
%T The Shilov boundary and the Gelfand spectrum of algebras of generalized analytic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 41-49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_3_a4/
%G ru
%F IVM_2011_3_a4
A. R. Mirotin. The Shilov boundary and the Gelfand spectrum of algebras of generalized analytic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 41-49. http://geodesic.mathdoc.fr/item/IVM_2011_3_a4/