The Shilov boundary and the Gelfand spectrum of algebras of generalized analytic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 41-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be discrete abelian semigroup with unit and consellations. We show that the strong boundary and the Shilov boundary of the algebra of generalized analytic functions on the semigroup $\widehat S$ of semicharacters of $S$ are unions of some maximal subgroups of $\widehat S$. If $S$ does not contain nontrivial simple ideals, then both boundaries coincide with the character group of $S$. In this case, the Gelfand spectrum of the algebra under consideration has been calculated.
Keywords: Shilov boundary, Gelfand spectrum, uniform algebra, generalized analytic function.
@article{IVM_2011_3_a4,
     author = {A. R. Mirotin},
     title = {The {Shilov} boundary and the {Gelfand} spectrum of algebras of generalized analytic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--49},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_3_a4/}
}
TY  - JOUR
AU  - A. R. Mirotin
TI  - The Shilov boundary and the Gelfand spectrum of algebras of generalized analytic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 41
EP  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_3_a4/
LA  - ru
ID  - IVM_2011_3_a4
ER  - 
%0 Journal Article
%A A. R. Mirotin
%T The Shilov boundary and the Gelfand spectrum of algebras of generalized analytic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 41-49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_3_a4/
%G ru
%F IVM_2011_3_a4
A. R. Mirotin. The Shilov boundary and the Gelfand spectrum of algebras of generalized analytic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2011), pp. 41-49. http://geodesic.mathdoc.fr/item/IVM_2011_3_a4/

[1] Arens R., Singer I. M., “Generalized analytic functions”, Trans. Amer. Math. Soc., 81:2 (1956), 379–393 | MR | Zbl

[2] Arens R., “A Banach algebra generalization of conformal mappings of the disc”, Trans. Amer. Math. Soc., 81:3 (1956), 501–513 | MR | Zbl

[3] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[4] Rudin W., Fourier analysis on groups, Interscience, N.Y., 1962 | MR | Zbl

[5] Tonev T., Big planes, boundaries and function algebras, North-Holland, Amsterdam, 1992 | MR | Zbl

[6] Grigoryan S. A., Tonev T., Shift-invariant uniform algebras on groups, Birkhäuser, Basel, 2006 | MR | Zbl

[7] Mirotin A. R., “Teorema Peli–Vinera dlya konusov v lokalno kompaktnykh abelevykh gruppakh”, Izv. vuzov. Matematika, 1995, no. 3, 35–44 | MR | Zbl

[8] Mirotin A. R., Romanova M. A., “Interpolyatsionnye mnozhestva algebry obobschennykh analiticheskikh funktsii”, Izv. vuzov. Matematika, 2007, no. 3, 51–59 | MR | Zbl

[9] Mirotin A. R., Romanova M. A., “O strogoi granitse i granitse Shilova algebr obobschennykh analiticheskikh funktsii”, Novye matem. metody i komp. tekhnologii, Materialy XI Resp. nauch. konf. stud. i asp. (Gomel, 17–19 marta 2008 g.), ch. 1, Gomel, 2008, 133–134

[10] Bonsall F. F., Duncan J., Complete normed algebras, Springer-Verlag, Berlin–Heidelberg–New York, 1973 | MR | Zbl

[11] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 2, Mir, M., 1974

[12] Taylor J. L., Measure algebras, AMS, Providence, 1973 | MR

[13] Carruth J. H., Hildebrant J. A., Coch R. J., The theory of topological semigroups, Marcel Dekker, Inc., New York–Basel, 1983 | MR | Zbl

[14] Kelli Dzh., Obschaya topologiya, Nauka, M., 1981 | MR

[15] Mirotin A. R., Garmonicheskii analiz na abelevykh polugruppakh, GGU im. F. Skoriny, Gomel, 2008

[16] Mirotin A. R., Romanova M. A., “Ob $H$-avtomorfnykh obobschennykh analiticheskikh funktsiyakh”, Vestsi Natsyyanaln. akad. navuk Belarusi. Seryya fiz.-mat. navuk, 2007, no. 2, 24–28 | MR