A method for solving a~general multi-valued complementarity problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2011), pp. 46-53
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose an extended version of Chandrasekaran's method for general complementarity problems with multi-valued weakly off-diagonally antitone cost mappings. It allows one either to construct a sequence converging to a solution or to recognize that the problem has no solutions. We also suggest versions of Jacobi's methods for multi-valued inclusions subject to one- and two-sided constraints.
Keywords:
complementarity problem, multi-valued mapping, off-diagonal antitonicity, coordinate descent method, multi-valued inclusions.
@article{IVM_2011_2_a4,
author = {I. V. Konnov and I. A. Pastukhov},
title = {A method for solving a~general multi-valued complementarity problem},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {46--53},
publisher = {mathdoc},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2011_2_a4/}
}
TY - JOUR AU - I. V. Konnov AU - I. A. Pastukhov TI - A method for solving a~general multi-valued complementarity problem JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2011 SP - 46 EP - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2011_2_a4/ LA - ru ID - IVM_2011_2_a4 ER -
I. V. Konnov; I. A. Pastukhov. A method for solving a~general multi-valued complementarity problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2011), pp. 46-53. http://geodesic.mathdoc.fr/item/IVM_2011_2_a4/