A multisheet plane figure and its medial axis
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2011), pp. 42-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multisheet plane figure is a projection onto the plane of a surface whose every point has a neighborhood which can be projected onto the plane univocally. A multisheet plane figure can be considered as a generalization of the concept of a common plane figure for the case when the boundary may contain self-intersecting curves and pairwise intersecting curves. The medial axis of a common plane figure is a set of points equidistant from the boundary. The concept of the medial axis of a multisheet plane figure is defined and researched into in the paper. Medial axis can be utilized in numerous computer science applications.
Keywords: multisheet plane figure, plane figure, medial axis, patched surface.
@article{IVM_2011_12_a4,
     author = {I. S. Mekhedov},
     title = {A multisheet plane figure and its medial axis},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--53},
     publisher = {mathdoc},
     number = {12},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_12_a4/}
}
TY  - JOUR
AU  - I. S. Mekhedov
TI  - A multisheet plane figure and its medial axis
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 42
EP  - 53
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_12_a4/
LA  - ru
ID  - IVM_2011_12_a4
ER  - 
%0 Journal Article
%A I. S. Mekhedov
%T A multisheet plane figure and its medial axis
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 42-53
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_12_a4/
%G ru
%F IVM_2011_12_a4
I. S. Mekhedov. A multisheet plane figure and its medial axis. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2011), pp. 42-53. http://geodesic.mathdoc.fr/item/IVM_2011_12_a4/

[1] Blum H., “A transformation for extracting new descriptors of shape”, Models for the perception of speech and visual form, ed. W. Wathen-Dunn, MIT Press, 1967, 362–380

[2] Mestetskii L. M., Nepreryvnaya morfologiya binarnykh izobrazhenii. Figury. Skelety. Tsirkulyary, Fizmatlit, M., 2009

[3] Chazal F., Soufflet R., “Stability and finiteness properties of medial axis and skeleton”, J. Dynamical Control Systems, 10:2 (2004), 149–170 | DOI | MR | Zbl

[4] Choi H. I., Choi S. W., Moon H. P., “Mathematical theory of medial axis transform”, Pacific J. Math., 181:1 (1997), 57–88 | DOI | MR | Zbl

[5] Ivanov A. O., Tuzhilin A. A., “Pogruzhennye mnogougolniki i ikh diagonalnye triangulyatsii”, Izv. RAN. Ser. matem., 72:1 (2008), 67–98 | MR | Zbl

[6] Mekhedov I. S., Mestetskiy L. M., “Fusion as a novel binary operation on medial axes”, Proc. Int. Symp. on Voronoi diagrams in science and engeneering (Quebec, Canada, 2010), IEEE-CS, 2010, 66–73

[7] Ahlfors L. V., Sario L., Riemannian surfaces, Princeton University Press, Princeton, N.J., 1960, chapter I | MR

[8] Mischenko A. C., Fomenko A. V., Kurs differentsialnoi geometrii i topologii, Faktorial Press, M., 2000