Relationship between matching and assignment problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 34-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(R_{ik})_{i,k=1}^n$ and $(J_{ik})_{i,k=1}^n$ be preference matrices in the stable matching problem and let $(J_{ik})_{i,k=1}^n$ be the measure of the mutual antipathy in the assignment problem. In this paper we describe all functions $f$ such that if $H_{i,k}=f(R_{ik},J_{ik})$ then for any matrices $R$ and $J$ solution sets in stable matching and assignment problems (partly) coincide. Thus we answer the question about the relationship between these problems stated by D. Knuth. The results are analogous to the Arrow theorem, and the proof techniques are close to those used in the group choice theory.
Keywords: stable matching, assignment problem, Knuth problems, preference matrix, group choice, Arrow theorem.
@article{IVM_2011_11_a3,
     author = {E. Yu. Lerner},
     title = {Relationship between matching and assignment problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {34--40},
     publisher = {mathdoc},
     number = {11},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a3/}
}
TY  - JOUR
AU  - E. Yu. Lerner
TI  - Relationship between matching and assignment problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 34
EP  - 40
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_11_a3/
LA  - ru
ID  - IVM_2011_11_a3
ER  - 
%0 Journal Article
%A E. Yu. Lerner
%T Relationship between matching and assignment problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 34-40
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_11_a3/
%G ru
%F IVM_2011_11_a3
E. Yu. Lerner. Relationship between matching and assignment problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 34-40. http://geodesic.mathdoc.fr/item/IVM_2011_11_a3/

[1] Gale D., Shapley L. S., “College admissions and the stability of marriage”, Amer. Math. Monthly, 69:1 (1962), 9–15 | DOI | MR | Zbl

[2] Roth A., Sotomayor M., Two-sided matching: a study in game-theoretic modeling and analysis, Econometric Society Monographs, 18, Cambridge University Press, Cambridge, England, 1990 | MR | Zbl

[3] Knuth D. E., Stable marriage and its relation to other combinatorial problems: an introduction to mathematical analysis of algorithms, AMS, Providence, RI, 1996 | MR | Zbl

[4] Lovas L., Plammer M. D., Prikladnye zadachi teorii grafov: teoriya parosochetanii v matematike, fizike, khimii, Mir, M., 1998

[5] Danilov V. I., Lektsii po teorii igr, Rossiiskaya ekonomicheskaya shkola, M., 2002

[6] Aleskerov F. T., Khabina E. L., Shvarts D. A., Binarnye otnosheniya, grafy i kollektivnye resheniya, GU-VShE, M., 2006

[7] Arrow K. J., Social choice and individual values, 2nd ed., Wiley, New York, 1963

[8] Echenique F., What matchings can be stable? The testable implications of matching theory, Caltech SS Working Paper 1252, 2006 http://www.hss.caltech.edu/SSPapers/wp1252.pdf

[9] Danilov V. I., Sotskov A. I., Mekhanizmy gruppovogo vybora, Nauka, M., 1991

[10] Lerner E. Yu., Yakovleva O. S., “Ustoichivye parosochetaniya i zadacha o naznachenii”, Issledovaniya po prikladnoi matematike, 26, Izd-vo KMO, Kazan, 2008, 51–55