Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_11_a3, author = {E. Yu. Lerner}, title = {Relationship between matching and assignment problems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {34--40}, publisher = {mathdoc}, number = {11}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a3/} }
E. Yu. Lerner. Relationship between matching and assignment problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 34-40. http://geodesic.mathdoc.fr/item/IVM_2011_11_a3/
[1] Gale D., Shapley L. S., “College admissions and the stability of marriage”, Amer. Math. Monthly, 69:1 (1962), 9–15 | DOI | MR | Zbl
[2] Roth A., Sotomayor M., Two-sided matching: a study in game-theoretic modeling and analysis, Econometric Society Monographs, 18, Cambridge University Press, Cambridge, England, 1990 | MR | Zbl
[3] Knuth D. E., Stable marriage and its relation to other combinatorial problems: an introduction to mathematical analysis of algorithms, AMS, Providence, RI, 1996 | MR | Zbl
[4] Lovas L., Plammer M. D., Prikladnye zadachi teorii grafov: teoriya parosochetanii v matematike, fizike, khimii, Mir, M., 1998
[5] Danilov V. I., Lektsii po teorii igr, Rossiiskaya ekonomicheskaya shkola, M., 2002
[6] Aleskerov F. T., Khabina E. L., Shvarts D. A., Binarnye otnosheniya, grafy i kollektivnye resheniya, GU-VShE, M., 2006
[7] Arrow K. J., Social choice and individual values, 2nd ed., Wiley, New York, 1963
[8] Echenique F., What matchings can be stable? The testable implications of matching theory, Caltech SS Working Paper 1252, 2006 http://www.hss.caltech.edu/SSPapers/wp1252.pdf
[9] Danilov V. I., Sotskov A. I., Mekhanizmy gruppovogo vybora, Nauka, M., 1991
[10] Lerner E. Yu., Yakovleva O. S., “Ustoichivye parosochetaniya i zadacha o naznachenii”, Issledovaniya po prikladnoi matematike, 26, Izd-vo KMO, Kazan, 2008, 51–55