On the word problem for the free Burnside semigroups satisfying~$x^2=x^3$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 89-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the word problem for free Burnside semigroups satisfying the identity $x^2=x^3$. For any $k>2$ we prove that the word problem for the $k$-generated free Burnside semigroup $B(2,1,k)$ can be reduced to the word problem for the two-generated semigroup $B(2,1,2)$. Moreover, if every element of $B(2,1,2)$ is a regular language, then every element of $B(2,1,k)$ also appears to be a regular language. Therefore, the semigroup $B(2,1,k)$ satisfies the Brzozowski conjecture if and only if so does $B(2,1,2)$.
Keywords: free Burnside semigroups, word problem, Brzozowski conjecture.
@article{IVM_2011_11_a10,
     author = {A. N. Plyushchenko},
     title = {On the word problem for the free {Burnside} semigroups satisfying~$x^2=x^3$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {89--93},
     publisher = {mathdoc},
     number = {11},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a10/}
}
TY  - JOUR
AU  - A. N. Plyushchenko
TI  - On the word problem for the free Burnside semigroups satisfying~$x^2=x^3$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 89
EP  - 93
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_11_a10/
LA  - ru
ID  - IVM_2011_11_a10
ER  - 
%0 Journal Article
%A A. N. Plyushchenko
%T On the word problem for the free Burnside semigroups satisfying~$x^2=x^3$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 89-93
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_11_a10/
%G ru
%F IVM_2011_11_a10
A. N. Plyushchenko. On the word problem for the free Burnside semigroups satisfying~$x^2=x^3$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 89-93. http://geodesic.mathdoc.fr/item/IVM_2011_11_a10/

[1] do Lago A. P., Simon I., “Free Burnside semigroups”, RAIRO Theoret. Inform. Appl., 35:6 (2001), 579–595 | DOI | MR | Zbl

[2] Green J. A., Rees D., “On semigroups in which $x^r=x$”, Proc. Cambridge Phil. Soc., 48 (1952), 35–40 | DOI | MR | Zbl

[3] Kad'ourek L., Polák J., “On free semigroups satisfying $x^r\simeq x$”, Simon Stevin, 64:1 (1990), 3–19 | MR | Zbl

[4] de Luca A., Varricchio S., “On non-counting regular classes”, Proc. of 17th Int. Colloq. “Automata languages and programming” (Warwick/GB 1990), Lect. Notes Comput. Sci., 443, Springer, Berlin, 1990, 74–87

[5] McCammond J., “The solution to the word problem for the relatively free semigroups satisfying $t^a=t^{a+b}$ with $a\ge6$”, Internat. J. Algebra Comput., 1:1 (1991), 1–32 | DOI | MR | Zbl

[6] Guba V. S., “The word problem for the relatively free semigroups satisfying $t^m=t^{m+n}$ with $m\ge4$ or $m\ge3$, $n=1$”, Internat. J. Algebra Comput., 3:2 (1993), 125–140 | DOI | MR | Zbl

[7] Guba V. S., “The word problem for the relatively free semigroups satisfying $t^m=t^{m+n}$ with $m\ge3$”, Internat. J. Algebra Comput., 3:3 (1993), 335–348 | DOI | MR

[8] do Lago A. P., “On the Burnside semigroups $x^n=x^{n+m}$”, Internat. J. Algebra Comput., 6:2 (1996), 179–227 | DOI | MR | Zbl

[9] do Lago A. P., “Maximal groups in free Burnside semigroups”, Proc. of 3rd American Symp. “LATIN' 98, theoretical informatics” (Campinas, Brasil, April 20–24, 1998), Lect. Notes. Comput. Sci., 1380, Springer, Heidelberg, 1998, 65–75 | MR | Zbl

[10] Brzozowski J., “Open problems about regular languages”, Formal language theory: perspectives and open problems, Academic Press, New York, 1980, 23–47

[11] Bakirov M. F., Sukhanov E. V., “Slova Tue–Morsa i $\mathcal D$-stroenie svobodnoi bernsaidovoi polugruppy”, Izv. Uralsk. gos. un-ta. Ser. matem. i mekhanika, 18:3 (2000), 5–19 | MR | Zbl

[12] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, M., 1985 | MR