Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2011_11_a10, author = {A. N. Plyushchenko}, title = {On the word problem for the free {Burnside} semigroups satisfying~$x^2=x^3$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {89--93}, publisher = {mathdoc}, number = {11}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2011_11_a10/} }
A. N. Plyushchenko. On the word problem for the free Burnside semigroups satisfying~$x^2=x^3$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2011), pp. 89-93. http://geodesic.mathdoc.fr/item/IVM_2011_11_a10/
[1] do Lago A. P., Simon I., “Free Burnside semigroups”, RAIRO Theoret. Inform. Appl., 35:6 (2001), 579–595 | DOI | MR | Zbl
[2] Green J. A., Rees D., “On semigroups in which $x^r=x$”, Proc. Cambridge Phil. Soc., 48 (1952), 35–40 | DOI | MR | Zbl
[3] Kad'ourek L., Polák J., “On free semigroups satisfying $x^r\simeq x$”, Simon Stevin, 64:1 (1990), 3–19 | MR | Zbl
[4] de Luca A., Varricchio S., “On non-counting regular classes”, Proc. of 17th Int. Colloq. “Automata languages and programming” (Warwick/GB 1990), Lect. Notes Comput. Sci., 443, Springer, Berlin, 1990, 74–87
[5] McCammond J., “The solution to the word problem for the relatively free semigroups satisfying $t^a=t^{a+b}$ with $a\ge6$”, Internat. J. Algebra Comput., 1:1 (1991), 1–32 | DOI | MR | Zbl
[6] Guba V. S., “The word problem for the relatively free semigroups satisfying $t^m=t^{m+n}$ with $m\ge4$ or $m\ge3$, $n=1$”, Internat. J. Algebra Comput., 3:2 (1993), 125–140 | DOI | MR | Zbl
[7] Guba V. S., “The word problem for the relatively free semigroups satisfying $t^m=t^{m+n}$ with $m\ge3$”, Internat. J. Algebra Comput., 3:3 (1993), 335–348 | DOI | MR
[8] do Lago A. P., “On the Burnside semigroups $x^n=x^{n+m}$”, Internat. J. Algebra Comput., 6:2 (1996), 179–227 | DOI | MR | Zbl
[9] do Lago A. P., “Maximal groups in free Burnside semigroups”, Proc. of 3rd American Symp. “LATIN' 98, theoretical informatics” (Campinas, Brasil, April 20–24, 1998), Lect. Notes. Comput. Sci., 1380, Springer, Heidelberg, 1998, 65–75 | MR | Zbl
[10] Brzozowski J., “Open problems about regular languages”, Formal language theory: perspectives and open problems, Academic Press, New York, 1980, 23–47
[11] Bakirov M. F., Sukhanov E. V., “Slova Tue–Morsa i $\mathcal D$-stroenie svobodnoi bernsaidovoi polugruppy”, Izv. Uralsk. gos. un-ta. Ser. matem. i mekhanika, 18:3 (2000), 5–19 | MR | Zbl
[12] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, M., 1985 | MR