The set of quantum states and its averaged dynamic transformations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 48-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the set of quantum states and passages to the limit for sequences of quantum dynamic semigroups in the mentioned set. We study the structure of the set of extreme points of the set of quantum states and represent an arbitrary state as an integral over the set of one-dimensional orthogonal projectors; the obtained representation is similar to the spectral decomposition of the normal state. We apply the obtained results to the analysis of the limit behavior of sequences of quantum dynamic semigroups which occur in the regularization of the degenerate Hamiltonian.
Keywords: finitely additive measure, quantum state, dynamic semigroup.
@article{IVM_2011_10_a5,
     author = {V. Z. Sakbaev},
     title = {The set of quantum states and its averaged dynamic transformations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--58},
     publisher = {mathdoc},
     number = {10},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2011_10_a5/}
}
TY  - JOUR
AU  - V. Z. Sakbaev
TI  - The set of quantum states and its averaged dynamic transformations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2011
SP  - 48
EP  - 58
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2011_10_a5/
LA  - ru
ID  - IVM_2011_10_a5
ER  - 
%0 Journal Article
%A V. Z. Sakbaev
%T The set of quantum states and its averaged dynamic transformations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2011
%P 48-58
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2011_10_a5/
%G ru
%F IVM_2011_10_a5
V. Z. Sakbaev. The set of quantum states and its averaged dynamic transformations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2011), pp. 48-58. http://geodesic.mathdoc.fr/item/IVM_2011_10_a5/

[1] Gitman D. M., Tyutin I. V., Kanonicheskoe kvantovanie polei so svyazyami, Nauka, M., 1986 | MR | Zbl

[2] Sakbaev V. Zh., “O spektralnykh aspektakh regulyarizatsii zadachi Koshi dlya vyrozhdennogo uravneniya”, Tr. MIAN im. V. A. Steklova, 261, 2008, 258–267 | MR

[3] Kozlov V. V., “Dinamika sistem s neintegriruemymi svyazyami. I”, Vestn. Mosk. un-ta. Ser. 1. Matem, mekhan., 1982, no. 3, 92–100 | Zbl

[4] Bratelli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR

[5] Emkh Zh., Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976

[6] Accardi L., Lu Y. G., Volovich I. V., Quantum theory and its stochastic limit, Texts and monographs in physics, Springer, 2001 | MR

[7] Keri A. L., Sukochev F. A., “Sledy Diksme i nekotorye prilozheniya v nekommutativnoi geometrii”, UMN, 61:6 (2006), 45–110 | MR | Zbl

[8] Srinivas M. D., “Collapse postulate for observables with continuous spectra”, Comm. Math. Phys., 71:2 (1980), 131–158 | DOI | MR | Zbl

[9] Sherstnev A. N., Metody bilineinykh form v nekommutativnoi teorii mery i integrala, Fizmatlit, M., 2008 | Zbl

[10] Glauber R., “Opticheskaya kogerentnost i statistika fotonov”, Kvantovaya optika i radiofizika, Mir, M., 1966, 93–279

[11] Kholevo A. S., Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, Moskva–Izhevsk, 2003

[12] Danford N., Shvarts D., Teoriya operatorov, v. 1, URSS, M., 2004

[13] Iosida K., Hewitt E., “Finitely additive measures”, Trans. Amer. Math. Soc., 72 (1952), 46–66 | DOI | MR

[14] Chentsov A. G., Konechno-additivnye mery i relaksatsii ekstremalnykh zadach, UIF Nauka, Ekaterinburg, 1993

[15] Sakbaev V. Zh., “Stochastic properties of degenerated quantum systems”, Inf. Dimens. Anal. Quantum Probab. Relat. Top., 13:1 (2010), 65–85 | DOI | MR | Zbl

[16] Sakbaev V. Zh., “Ob usrednenii kvantovykh dinamicheskikh polugrupp”, TMF, 164:3 (2010), 455–463

[17] Sakbaev V. Zh., “O dinamike vyrozhdennoi kvantovoi sistemy v prostranstve funktsii, integriruemykh po konechno-additivnoi mere”, Tr. MFTI, 1:4 (2009), 126–147

[18] Sakbaev V. Zh., “O mnogoznachnykh otobrazheniyakh, zadavaemykh regulyarizatsiei uravneniya Shrëdingera s vyrozhdeniem”, Zhurn. vychisl. matem. i matem. fiz., 46:4 (2006), 683–699 | MR | Zbl

[19] Amosov G. G., Sakbaev V. Zh., “Stokhasticheskie svoistva dinamiki kvantovykh sistem”, Vestn. SamGU, 8:1 (2008), 479–494