@article{IVM_2010_9_a9,
author = {D. V. Turtin},
title = {The maximal nonuniqueness classes of solutions to the {Cauchy} problem for linear equations},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {90--93},
year = {2010},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_9_a9/}
}
D. V. Turtin. The maximal nonuniqueness classes of solutions to the Cauchy problem for linear equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 90-93. http://geodesic.mathdoc.fr/item/IVM_2010_9_a9/
[1] Chebotarev N. G., Teoriya algebraicheskikh funktsii, Gostekhizdat, M., 1948
[2] Kosarev N. G., “O edinstvennosti resheniya zadachi Koshi dlya lineinykh uravnenii s peremennymi koeffitsientami”, Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, 2, Yaroslavl, 1977, 141–158 | MR | Zbl
[3] Gelfand I. M., Shilov G. E., Obobschennye funktsii. Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatlit, M., 1958 | MR
[4] Zhitomirskii Ya. I., “Klassy edinstvennosti resheniya zadachi Koshi dlya lineinykh uravnenii s rastuschimi koeffitsientami”, Izv. AN SSSR. Ser. matem., 31:4 (1967), 763–782 | MR | Zbl
[5] Kosarev N. G., “O zadache Koshi dlya lineinykh uravnenii s peremennymi koeffitsientami”, Nauchnye trudy IvGU. Matematika, 2, Ivanovo, 1999, 86–92
[6] Zolotarev G. N., “Netrivialnye resheniya zadachi Koshi s nulevymi nachalnymi usloviyami”, Uchen. zap. Ivanovsk. gos. ped. in-ta, 31 (1963), 29–36 | MR