Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_9_a9, author = {D. V. Turtin}, title = {The maximal nonuniqueness classes of solutions to the {Cauchy} problem for linear equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {90--93}, publisher = {mathdoc}, number = {9}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_9_a9/} }
TY - JOUR AU - D. V. Turtin TI - The maximal nonuniqueness classes of solutions to the Cauchy problem for linear equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 90 EP - 93 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_9_a9/ LA - ru ID - IVM_2010_9_a9 ER -
D. V. Turtin. The maximal nonuniqueness classes of solutions to the Cauchy problem for linear equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 90-93. http://geodesic.mathdoc.fr/item/IVM_2010_9_a9/
[1] Chebotarev N. G., Teoriya algebraicheskikh funktsii, Gostekhizdat, M., 1948
[2] Kosarev N. G., “O edinstvennosti resheniya zadachi Koshi dlya lineinykh uravnenii s peremennymi koeffitsientami”, Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, 2, Yaroslavl, 1977, 141–158 | MR | Zbl
[3] Gelfand I. M., Shilov G. E., Obobschennye funktsii. Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatlit, M., 1958 | MR
[4] Zhitomirskii Ya. I., “Klassy edinstvennosti resheniya zadachi Koshi dlya lineinykh uravnenii s rastuschimi koeffitsientami”, Izv. AN SSSR. Ser. matem., 31:4 (1967), 763–782 | MR | Zbl
[5] Kosarev N. G., “O zadache Koshi dlya lineinykh uravnenii s peremennymi koeffitsientami”, Nauchnye trudy IvGU. Matematika, 2, Ivanovo, 1999, 86–92
[6] Zolotarev G. N., “Netrivialnye resheniya zadachi Koshi s nulevymi nachalnymi usloviyami”, Uchen. zap. Ivanovsk. gos. ped. in-ta, 31 (1963), 29–36 | MR