Application of the duality theory in modeling hydraulic systems with flow regulators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 76-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider mathematical models of operation of pipelines with automatic flow regulators installed on several sections. We present a system of equations and inequalities that describes the flow distribution in such pipelines. We prove that the stated system gives optimality conditions for two mutually dual convex programming problems. This enables us to obtain conditions for the unique existence of a solution to this system.
Keywords: duality theory in optimization, hydraulic circuit, flow regulator.
@article{IVM_2010_9_a6,
     author = {S. P. Epifanov and V. I. Zorkaltsev},
     title = {Application of the duality theory in modeling hydraulic systems with flow regulators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--81},
     publisher = {mathdoc},
     number = {9},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_9_a6/}
}
TY  - JOUR
AU  - S. P. Epifanov
AU  - V. I. Zorkaltsev
TI  - Application of the duality theory in modeling hydraulic systems with flow regulators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 76
EP  - 81
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_9_a6/
LA  - ru
ID  - IVM_2010_9_a6
ER  - 
%0 Journal Article
%A S. P. Epifanov
%A V. I. Zorkaltsev
%T Application of the duality theory in modeling hydraulic systems with flow regulators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 76-81
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_9_a6/
%G ru
%F IVM_2010_9_a6
S. P. Epifanov; V. I. Zorkaltsev. Application of the duality theory in modeling hydraulic systems with flow regulators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 76-81. http://geodesic.mathdoc.fr/item/IVM_2010_9_a6/

[1] Merenkov A. P., Khasilev V. Ya., Teoriya gidravlicheskikh tsepei, Nauka, M., 1985 | Zbl

[2] Khasilev V. Ya., Merenkov A. P., Kaganovich B. M. i dr., Metody i algoritmy rascheta teplovykh setei, Energiya, M., 1978

[3] Dikin I. I., Popova O. M., Epifanov S. P., Primenenie metodov vspomogatelnykh funktsii i vnutrennikh tochek pri raschetakh potokoraspredeleniya v gidravlicheskikh sistemakh, Preprint No 10, ISEM SO RAN, Irkutsk, 1999 | MR

[4] Sennova E. V., Sidler V. G., Matematicheskoe modelirovanie i optimizatsiya razvivayuschikhsya teplosnabzhayuschikh sistem, Nauka, Novosibirsk, 1987

[5] Novitskii N. N., Tokarev V. V., “Releinaya metodika rascheta potokoraspredeleniya v gidravlicheskikh tsepyakh s reguliruemymi parametrami”, Izv. RAN. Energetika, 2001, no. 2, 88–98

[6] Zorkaltsev V. I., “Simmetrichnaya dvoistvennost v optimizatsii i ee prilozheniya”, Izv. vuzov. Matematika, 2006, no. 12, 55–64 | MR

[7] Epifanov S. P., Zorkaltsev V. I., “Prilozhenie teorii dvoistvennosti k modelyam potokoraspredeleniya”, Vychislitelnye tekhnologii, 14:1 (2009), 67–80 | MR

[8] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[9] Zorkaltsev V. I., Kiseleva M. A., Sistemy lineinykh neravenstv, Izd-vo Irkutsk. gos. un-ta, Irkutsk, 2007

[10] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002