@article{IVM_2010_9_a1,
author = {P. D. Andreev},
title = {A. {D.~Alexandrov's} problem for non-positively curved spaces in the sense of {Busemann}},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {10--35},
year = {2010},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_9_a1/}
}
P. D. Andreev. A. D. Alexandrov's problem for non-positively curved spaces in the sense of Busemann. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 10-35. http://geodesic.mathdoc.fr/item/IVM_2010_9_a1/
[1] Berestovskii V. N., “Isometries in Aleksandrov spaces of curvature bounded above”, Ill. J. Math., 46:20 (2002), 645–656 | MR | Zbl
[2] Andreev P. D., “Vosstanovlenie metriki $CAT(0)$-prostranstva po diagonalnoi trubke”, Zap. nauch. sem. POMI, 299, 2003, 5–29 | MR
[3] Andreev P. D., “Zadacha A. D. Aleksandrova dlya $CAT(0)$-prostranstv”, Sib. matem. zhurn., 47:1 (2006), 3–24 | MR | Zbl
[4] Bowditch B. H., “Minkowskian subspaces of non-positively curved metric spaces”, Bull. London Math. Soc., 27:6 (1995), 575–584 | DOI | MR | Zbl
[5] Papadopoulos A., Metric spaces, convexity and nonpositive curvature, IRMA Lectures in Mathematics and Theoretical Physics, 6, European Mathematical Society, Zürich, 2005 | MR | Zbl
[6] Hosaka T., “Limit sets of geometrically finite groups acting on Busemann spaces”, Topology and Appl., 122:3 (2002), 565–580 | DOI | MR | Zbl
[7] Hotchkiss Ph. K., “The boundary of a Busemann space”, Proc. Amer. Math. Soc., 125:7 (1997), 1903–1912 | DOI | MR | Zbl
[8] Rinow W., Die innere Geometrie der metrischen Räume, Grund. Math. Wiss., 105, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1961 | MR | Zbl
[9] Andreev P. D., “Geometriya idealnykh granits geodezicheskikh prostranstv s nepolozhitelnoi kriviznoi v smysle Buzemana”, Matem. tr., 10:1 (2007), 16–28 | MR
[10] Cohn-Vossen S., “Existenz kürzester Wege”, C. R. (Dokl.) Acad. Sci. USSR, n. Ser., 1935, no. 3, 339–342 | Zbl
[11] Rieffel M., “Group $C^\ast$-algebras as compact quantum metric spaces”, Doc. Math., 7 (2002), 605–651 | MR | Zbl