A.\,D.~Alexandrov's problem for non-positively curved spaces in the sense of Busemann
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 10-35
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is the last of a series devoted to the solution of Alexandrov's problem for non-positively curved spaces. Here we study non-positively curved spaces in the sense of Busemann. We prove that isometries of a geodesically complete connected at infinity proper Busemann space $X$ are characterizied as follows: if a bijection $f\colon X\to X$ and its inverse $f^{-1}$ preserve distance 1, then $f$ is an isometry.
Keywords:
Alexandrov's problem, non-positive curvature, geodesic, isometry, $r$-sequence, geodesic boundary, horofunction boundary.
@article{IVM_2010_9_a1,
author = {P. D. Andreev},
title = {A.\,D.~Alexandrov's problem for non-positively curved spaces in the sense of {Busemann}},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {10--35},
publisher = {mathdoc},
number = {9},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_9_a1/}
}
TY - JOUR AU - P. D. Andreev TI - A.\,D.~Alexandrov's problem for non-positively curved spaces in the sense of Busemann JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 10 EP - 35 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_9_a1/ LA - ru ID - IVM_2010_9_a1 ER -
P. D. Andreev. A.\,D.~Alexandrov's problem for non-positively curved spaces in the sense of Busemann. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 10-35. http://geodesic.mathdoc.fr/item/IVM_2010_9_a1/