A.\,D.~Alexandrov's problem for non-positively curved spaces in the sense of Busemann
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 10-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is the last of a series devoted to the solution of Alexandrov's problem for non-positively curved spaces. Here we study non-positively curved spaces in the sense of Busemann. We prove that isometries of a geodesically complete connected at infinity proper Busemann space $X$ are characterizied as follows: if a bijection $f\colon X\to X$ and its inverse $f^{-1}$ preserve distance 1, then $f$ is an isometry.
Keywords: Alexandrov's problem, non-positive curvature, geodesic, isometry, $r$-sequence, geodesic boundary, horofunction boundary.
@article{IVM_2010_9_a1,
     author = {P. D. Andreev},
     title = {A.\,D.~Alexandrov's problem for non-positively curved spaces in the sense of {Busemann}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--35},
     publisher = {mathdoc},
     number = {9},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_9_a1/}
}
TY  - JOUR
AU  - P. D. Andreev
TI  - A.\,D.~Alexandrov's problem for non-positively curved spaces in the sense of Busemann
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 10
EP  - 35
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_9_a1/
LA  - ru
ID  - IVM_2010_9_a1
ER  - 
%0 Journal Article
%A P. D. Andreev
%T A.\,D.~Alexandrov's problem for non-positively curved spaces in the sense of Busemann
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 10-35
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_9_a1/
%G ru
%F IVM_2010_9_a1
P. D. Andreev. A.\,D.~Alexandrov's problem for non-positively curved spaces in the sense of Busemann. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2010), pp. 10-35. http://geodesic.mathdoc.fr/item/IVM_2010_9_a1/

[1] Berestovskii V. N., “Isometries in Aleksandrov spaces of curvature bounded above”, Ill. J. Math., 46:20 (2002), 645–656 | MR | Zbl

[2] Andreev P. D., “Vosstanovlenie metriki $CAT(0)$-prostranstva po diagonalnoi trubke”, Zap. nauch. sem. POMI, 299, 2003, 5–29 | MR

[3] Andreev P. D., “Zadacha A. D. Aleksandrova dlya $CAT(0)$-prostranstv”, Sib. matem. zhurn., 47:1 (2006), 3–24 | MR | Zbl

[4] Bowditch B. H., “Minkowskian subspaces of non-positively curved metric spaces”, Bull. London Math. Soc., 27:6 (1995), 575–584 | DOI | MR | Zbl

[5] Papadopoulos A., Metric spaces, convexity and nonpositive curvature, IRMA Lectures in Mathematics and Theoretical Physics, 6, European Mathematical Society, Zürich, 2005 | MR | Zbl

[6] Hosaka T., “Limit sets of geometrically finite groups acting on Busemann spaces”, Topology and Appl., 122:3 (2002), 565–580 | DOI | MR | Zbl

[7] Hotchkiss Ph. K., “The boundary of a Busemann space”, Proc. Amer. Math. Soc., 125:7 (1997), 1903–1912 | DOI | MR | Zbl

[8] Rinow W., Die innere Geometrie der metrischen Räume, Grund. Math. Wiss., 105, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1961 | MR | Zbl

[9] Andreev P. D., “Geometriya idealnykh granits geodezicheskikh prostranstv s nepolozhitelnoi kriviznoi v smysle Buzemana”, Matem. tr., 10:1 (2007), 16–28 | MR

[10] Cohn-Vossen S., “Existenz kürzester Wege”, C. R. (Dokl.) Acad. Sci. USSR, n. Ser., 1935, no. 3, 339–342 | Zbl

[11] Rieffel M., “Group $C^\ast$-algebras as compact quantum metric spaces”, Doc. Math., 7 (2002), 605–651 | MR | Zbl