@article{IVM_2010_8_a9,
author = {E. D. Sherman},
title = {Empirical estimates with minimal $d$-risk for discrete exponential families},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {89--98},
year = {2010},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_8_a9/}
}
E. D. Sherman. Empirical estimates with minimal $d$-risk for discrete exponential families. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 89-98. http://geodesic.mathdoc.fr/item/IVM_2010_8_a9/
[1] Simushkin S. V., Volodin I. N., “Statistical inference with a minimal $d$-risk”, Lect. Note in Math., 1021, 1983, 107–114 | MR
[2] Volodin I. N., Simushkin S. V., “Statisticheskie vyvody s minimalnym $d$-riskom”, Issledovaniya po priklad. matem., 11, Izd-vo KGU, Kazan, 1984, 25–39 | MR
[3] Volodin I. N., Simushkin S. V., “Nesmeschennost i baiesovost”, Izv. vuzov. Matematika, 1987, no. 1, 3–7 | MR
[4] Volodin I. N., Novikov A. N., “Statisticheskie otsenki s asimptoticheski minimalnym $d$-riskom”, Teoriya veroyat. i ee primenen., 38:1 (1993), 20–32 | MR | Zbl
[5] Volodin I. N., Novikov A. N., Simushkin S. V., “Garantiinyi statisticheskii kontrol kachestva: aposteriornyi podkhod”, Obozrenie priklad. i promysh. matemat., 1:2 (1994), 1–32
[6] Simushkin S. V., “Empiricheskii $d$-aposteriornyi podkhod k probleme garantiinosti statisticheskogo vyvoda”, Izv. vuzov. Matematika, 1983, no. 11, 42–58 | MR | Zbl
[7] Robbins H., “An empirical Bayes approach to statistic”, Proc. Third Berkeley Symp. Math. Statist. Probab., v. 1, Univ. of Calif. Press, 1955, 157–164 | MR
[8] van der Vaart A. W., Asymptotic statistics, Cambridge University Press, Cambridge, 1998 | MR
[9] Fedoryuk M. V., Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl