The probability of correcting errors by an antinoise coding method when the number of errors belongs to a~random set
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 81-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $n$ messages of $N$ blocks each, where each block is encoded by some antinoise coding method. The method can correct no more than one error. We assume that the number of errors in the $i$th message belongs to some finite random subset of nonnegative integer numbers. Let $A$ stand for the event that all errors are corrected; we study the probability $\mathbf P(A)$ and calculate it in terms of conditional probabilities. We prove that under certain moment conditions probabilities $\mathbf P(A)$ converge almost sure as $n$ and $N$ tend to infinity so that the value $n/N$ has a finite limit. We calculate this limit explicitly.
Keywords: generalized allocation scheme, convergence almost sure, Hamming code.
@article{IVM_2010_8_a8,
     author = {A. N. Chuprunov and B. I. Khamdeyev},
     title = {The probability of correcting errors by an antinoise coding method when the number of errors belongs to a~random set},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {81--88},
     publisher = {mathdoc},
     number = {8},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_8_a8/}
}
TY  - JOUR
AU  - A. N. Chuprunov
AU  - B. I. Khamdeyev
TI  - The probability of correcting errors by an antinoise coding method when the number of errors belongs to a~random set
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 81
EP  - 88
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_8_a8/
LA  - ru
ID  - IVM_2010_8_a8
ER  - 
%0 Journal Article
%A A. N. Chuprunov
%A B. I. Khamdeyev
%T The probability of correcting errors by an antinoise coding method when the number of errors belongs to a~random set
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 81-88
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_8_a8/
%G ru
%F IVM_2010_8_a8
A. N. Chuprunov; B. I. Khamdeyev. The probability of correcting errors by an antinoise coding method when the number of errors belongs to a~random set. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 81-88. http://geodesic.mathdoc.fr/item/IVM_2010_8_a8/

[1] Novikov F. A., Diskretnaya matematika dlya programmistov, 2-e izd., Piter, SPb, 2004

[2] Kolchin V. F., “Odin klass predelnykh teorem dlya uslovnykh raspredelenii”, Litovsk. matem. sb., 8:1 (1968), 53–63 | MR | Zbl

[3] Kolchin V. F., Sluchainye grafy, Fizmatgiz, M., 2000 | MR | Zbl

[4] Kolchin A. V., “Predelnye teoremy dlya obobschennoi skhemy razmescheniya”, Diskret. matem., 15:4 (2003), 148–157 | MR | Zbl

[5] Kolchin A. V., Kolchin V. F., “O perekhode raspredelenii summ nezavisimykh odinakovo raspredelennykh sluchainykh velichin s odnoi reshetki na druguyu v obobschennoi skheme razmescheniya”, Diskret. matem., 18:4 (2006), 113–127 | MR | Zbl

[6] Kolchin A. V., Kolchin V. F., “Perekhod s odnoi reshetki na druguyu raspredelenii summ sluchainykh velichin, vstrechayuschikhsya v obobschennoi skheme razmescheniya”, Diskret. matem., 19:3 (2007), 15–21 | MR | Zbl

[7] Avkhadiev F. G., Chuprunov A. N., “The probability of a successful allocation of ball groups by boxes”, Lobachevskii J. Math., 25 (2007), 3–7 | MR | Zbl