@article{IVM_2010_8_a6,
author = {R. G. Salakhudinov},
title = {Isoperimetric monotony of the $L^p$-norm of the warping function of a~plane simply connected domain},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {59--68},
year = {2010},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_8_a6/}
}
TY - JOUR AU - R. G. Salakhudinov TI - Isoperimetric monotony of the $L^p$-norm of the warping function of a plane simply connected domain JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 59 EP - 68 IS - 8 UR - http://geodesic.mathdoc.fr/item/IVM_2010_8_a6/ LA - ru ID - IVM_2010_8_a6 ER -
R. G. Salakhudinov. Isoperimetric monotony of the $L^p$-norm of the warping function of a plane simply connected domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 59-68. http://geodesic.mathdoc.fr/item/IVM_2010_8_a6/
[1] Kohler-Jobin M.-Th., “Une propriété de monotonie isopérimétrique qui contient plusieurs théorèmes classiques”, C. R. Acad. Sci. Paris Sér. A, 284:3 (1977), 917–920 | MR | Zbl
[2] Hersch J., “Isoperimetric monotonicity: some properties and conjectures (connections between isoperimetric inequalities)”, SIAM Rev., 30:4 (1988), 551–577 | DOI | MR | Zbl
[3] Polia G., Segë G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962
[4] Bañuelos R., van den Berg M., Carroll T., “Torsional rigidity and expected lifetime of Brownian motion”, J. Lond. Math. Soc. II Ser., 66:2 (2002), 499–512 | DOI | MR | Zbl
[5] Hayman W. K., “Some bounds for the principal frequency”, Appl. Anal., 7 (1978), 247–254 | DOI | MR | Zbl
[6] Avkhadiev F. G., “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | MR | Zbl
[7] Salakhudinov R. G., “Ploschad poverkhnosti, ob'em i momenty inertsii oblasti otnositelno granitsy”, Materialy mezhdunarodn. nauch. konf. “Geometricheskaya teoriya funktsii i kraevye zadachi” (Kazan, 18–24 marta 2002), Izd-vo Kazansk. matem. o-va, Kazan, 2002, 132–136
[8] Avkhadiev F. G., Salahudinov R. G., “Isoperimetric inequalities for conformal moments of plane domains”, J. Inequal. Appl., 7:4 (2002), 593–601 | DOI | MR | Zbl
[9] Bandle C., Isoperimetric inequalities and applications, Pitman Advanced Publishing Program, Boston–London–Melbourne, 1980 | MR | Zbl
[10] Kohler-Jobin M.-Th., “Isoperimetric monotonicity and isoperimetric inequalities of Payne–Rayner type for the first eigenfunction of the Helmholtz problem”, Z. Angew. Math. Phys., 32 (1981), 625–646 | DOI | MR | Zbl