Isoperimetric monotony of the $L^p$-norm of the warping function of a~plane simply connected domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 59-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a simply connected domain and let $u(x,G)$ be its warping function. We prove that $L^p$-norms of functions $u$ and $u^{-1}$ are monotone with respect to the parameter $p$. This monotony also gives isoperimetric inequalities for norms that correspond to different values of the parameter $p$. The main result of this paper is a generalization of classical isoperimetric inequalities of St. Venant–Pólya and the Payne inequalities.
Keywords: torsional rigidity, isoperimetric inequalities, isoperimetric monotony, Schwarz symmetrization, Kohler-Jobin symmetrization.
@article{IVM_2010_8_a6,
     author = {R. G. Salakhudinov},
     title = {Isoperimetric monotony of the $L^p$-norm of the warping function of a~plane simply connected domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--68},
     publisher = {mathdoc},
     number = {8},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_8_a6/}
}
TY  - JOUR
AU  - R. G. Salakhudinov
TI  - Isoperimetric monotony of the $L^p$-norm of the warping function of a~plane simply connected domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 59
EP  - 68
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_8_a6/
LA  - ru
ID  - IVM_2010_8_a6
ER  - 
%0 Journal Article
%A R. G. Salakhudinov
%T Isoperimetric monotony of the $L^p$-norm of the warping function of a~plane simply connected domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 59-68
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_8_a6/
%G ru
%F IVM_2010_8_a6
R. G. Salakhudinov. Isoperimetric monotony of the $L^p$-norm of the warping function of a~plane simply connected domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 59-68. http://geodesic.mathdoc.fr/item/IVM_2010_8_a6/

[1] Kohler-Jobin M.-Th., “Une propriété de monotonie isopérimétrique qui contient plusieurs théorèmes classiques”, C. R. Acad. Sci. Paris Sér. A, 284:3 (1977), 917–920 | MR | Zbl

[2] Hersch J., “Isoperimetric monotonicity: some properties and conjectures (connections between isoperimetric inequalities)”, SIAM Rev., 30:4 (1988), 551–577 | DOI | MR | Zbl

[3] Polia G., Segë G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962

[4] Bañuelos R., van den Berg M., Carroll T., “Torsional rigidity and expected lifetime of Brownian motion”, J. Lond. Math. Soc. II Ser., 66:2 (2002), 499–512 | DOI | MR | Zbl

[5] Hayman W. K., “Some bounds for the principal frequency”, Appl. Anal., 7 (1978), 247–254 | DOI | MR | Zbl

[6] Avkhadiev F. G., “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | MR | Zbl

[7] Salakhudinov R. G., “Ploschad poverkhnosti, ob'em i momenty inertsii oblasti otnositelno granitsy”, Materialy mezhdunarodn. nauch. konf. “Geometricheskaya teoriya funktsii i kraevye zadachi” (Kazan, 18–24 marta 2002), Izd-vo Kazansk. matem. o-va, Kazan, 2002, 132–136

[8] Avkhadiev F. G., Salahudinov R. G., “Isoperimetric inequalities for conformal moments of plane domains”, J. Inequal. Appl., 7:4 (2002), 593–601 | DOI | MR | Zbl

[9] Bandle C., Isoperimetric inequalities and applications, Pitman Advanced Publishing Program, Boston–London–Melbourne, 1980 | MR | Zbl

[10] Kohler-Jobin M.-Th., “Isoperimetric monotonicity and isoperimetric inequalities of Payne–Rayner type for the first eigenfunction of the Helmholtz problem”, Z. Angew. Math. Phys., 32 (1981), 625–646 | DOI | MR | Zbl