Specific features of families of invariant manifolds of conservative systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 42-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we demonstrate the method of the enveloping first integral via an example of a completely integrable system of differential equations. This method allows a researcher to find and investigate singular invariant manifolds for a given family of invariant manifolds of steady motions represented by an initial system of equations. We describe specific properties of branching of the obtained families of singular invariant manifolds.
Keywords: conservative systems, invariant manifolds
Mots-clés : bifurcations.
@article{IVM_2010_8_a4,
     author = {V. D. Irtegov},
     title = {Specific features of families of invariant manifolds of conservative systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--50},
     publisher = {mathdoc},
     number = {8},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_8_a4/}
}
TY  - JOUR
AU  - V. D. Irtegov
TI  - Specific features of families of invariant manifolds of conservative systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 42
EP  - 50
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_8_a4/
LA  - ru
ID  - IVM_2010_8_a4
ER  - 
%0 Journal Article
%A V. D. Irtegov
%T Specific features of families of invariant manifolds of conservative systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 42-50
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_8_a4/
%G ru
%F IVM_2010_8_a4
V. D. Irtegov. Specific features of families of invariant manifolds of conservative systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2010), pp. 42-50. http://geodesic.mathdoc.fr/item/IVM_2010_8_a4/

[1] Rumyantsev V. V., “Sravnenie trekh metodov postroeniya funktsii Lyapunova”, PMM, 59:6 (1995), 873–877 | MR | Zbl

[2] Raus E. Dzh., Dinamika sistemy tverdykh tel, Nauka, M., 1983

[3] Lyapunov A. M., O postoyannykh vintovykh dvizheniyakh tverdogo tela v zhidkosti, Sobr. soch., Izd-vo AN SSSR, M., 1954

[4] Chetaev N. G., Ustoichivost dvizheniya. Raboty po analiticheskoi mekhanike, Izd-vo AN SSSR, M., 1962 | MR

[5] Kuzmin P. A., “Statsionarnye dvizheniya tverdogo tela i ikh ustoichivost v tsentralnom pole tyagoteniya”, Tr. Mezhvuzovsk. konf. po prikladnoi teorii ustoichiv. i anal. mekh., Kazan, 1964, 93–98

[6] Rumyantsev V. V., Ustoichivost statsionarnykh dvizhenii sputnikov, VTs AN SSSR, M., 1967

[7] Irtegov V. D., Invariantnye mnogoobraziya statsionarnykh dvizhenii i ikh ustoichivost, Nauka, Novosibirsk, 1985 | MR | Zbl

[8] Karapetyan A. V., Ustoichivost statsionarnykh dvizhenii, Editorial URSS, M., 1998

[9] Irtegov V. D., Titorenko T. N., “On one approach to investigation of mechanical system”, SIGMA, 2 (2006), Paper 049, 20 pp. | MR | Zbl

[10] Irtegov V. D., Titorenko T. N., “Ob invariantnykh mnogoobraziyakh sistem s pervymi integralami”, PMM, 73:4 (2009), 531–537 | MR

[11] Kokh D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Shpringer, Nyu-Iork, 1997 | MR

[12] Beletskii V. V., Dvizhenie iskusstvennogo sputnika otnositelno tsentra mass, Nauka, M., 1965

[13] Appel P., Teoreticheskaya mekhanika, Fizmatgiz, M., 1960

[14] Zubov V. I., Kolebaniya i volny, Len. gos. universitet, Leningrad, 1989 | MR | Zbl