Kinematics of finite elastoplastic deformations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2010), pp. 16-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We review various approaches to decomposition of total strains on elastic and nonelastic (plastic) components in a multiplicative representation of the deformation gradient tensor. We briefly describe the kinematics of finite strains and arbitrary flows. We show that the products of elastic and plastic principal stretches define full principal stretches. We describe two groups of techniques for decomposing strains and their rates on elastic and nonelastic components. Methods of the first group additively decompose specially constructed tensors defined in a uniform basis (initial, current, or “intermediate” one). Methods of the second group use some relation connecting tensors that describe elastic and plastic strains. We adduce an example of obtaining constitutive equations for elastoplastic continuums under large deformations from equations of thermodynamics.
Keywords: finite elastoplastic strains, material and spatial tensors, additive representation of deformation tensors, principal stretches
Mots-clés : multiplicative decomposition of deformation gradient, principal directions.
@article{IVM_2010_7_a1,
     author = {A. I. Golovanov},
     title = {Kinematics of finite elastoplastic deformations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--30},
     publisher = {mathdoc},
     number = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_7_a1/}
}
TY  - JOUR
AU  - A. I. Golovanov
TI  - Kinematics of finite elastoplastic deformations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 16
EP  - 30
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_7_a1/
LA  - ru
ID  - IVM_2010_7_a1
ER  - 
%0 Journal Article
%A A. I. Golovanov
%T Kinematics of finite elastoplastic deformations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 16-30
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_7_a1/
%G ru
%F IVM_2010_7_a1
A. I. Golovanov. Kinematics of finite elastoplastic deformations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2010), pp. 16-30. http://geodesic.mathdoc.fr/item/IVM_2010_7_a1/

[1] Eliseev V. V., Mekhanika uprugikh tel, SPbGPU, SPb., 1999

[2] Korobeinikov S. N., Nelineinoe deformirovanie tverdykh tel, SO RAN, Novosibirsk, 2000

[3] Levitas V. I., Bolshie uprugoplasticheskie deformatsii materialov pri vysokom davlenii, Nauk. dumka, Kiev, 1987 | Zbl

[4] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR

[5] Pozdeev A. A., Trusov P. V., Nyashin Yu. I., Bolshie uprugoplasticheskie deformatsii: teoriya, algoritm, prilozheniya, Nauka, M., 1986 | MR | Zbl

[6] Rabotyagov D. D., Mekhanika materialov pri bolshikh deformatsiyakh, Shtiintsa, Kishinev, 1975

[7] Simo J. S., “A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. I: Continuum formulation”, Comput. Meth. Appl. Mech. Eng., 66:2 (1988), 199–219 | DOI | MR | Zbl

[8] Xiao H., Bruhns O. T., Meyers A., “Logarithmic strain, logarithmic spin and logarithmic rate”, Acta Mech., 124:1–4 (1997), 89–105 | DOI | MR | Zbl

[9] Xiao H., Bruhns O. T., Meyers A., “A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and deformation gradient”, Int. J. Plasticity, 16:2 (2000), 143–177 | DOI | Zbl

[10] Xiao H., Chen L.-S., “Hencky's logarithmic strain and dual stress-strain and strain-stress relations in isotropic finite hyperelasticity”, Int. J. Solids Struct., 40:6 (2003), 1455–1463 | DOI | Zbl

[11] Xiao H., Bruhns O. T., Meyers A., “Thermodynamic laws and consistent Eulerian formulation of finite elasto-plasticity with thermal effects”, J. Mech. Phys. Solids, 55:2 (2007), 338–365 | DOI | MR | Zbl

[12] Markin A. A., Khristich D. V., Sokolova M. Yu., “Sootnosheniya nelineinoi termouprugosti v variatsionnoi forme”, Tr. Vseross. nauch. konf. “Matem. modelirovanie i kraevye zadachi”, Ch. 1, Samara, 2004, 139–142

[13] Markin A. A., Sokolova M. Yu., “Variant opredelyayuschikh sootnoshenii nelineinoi termouprugosti anizotropnykh tel”, PMTF, 44:1 (2003), 170–175 | Zbl

[14] Sansour C., “On the dual variable of the logarithmic strain tensor, the dual variable of the Cauchy stress tensor, and related issues”, Int. J. Solids Struct., 38 (2001), 9221–9232 | DOI | MR | Zbl

[15] Kadashevich Yu. I., Pomytkin S. P., “Rol mery deformatsii pri postroenii endokhronnykh variantov teorii plastichnosti, uchityvayuschei konechnye deformatsii”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. fiz.-matem. nauki, 12, mart (2001), 91–93

[16] Kadashevich Yu. I., Pomytkin S. P., “Opisanie effektov vtorogo poryadka pri uchete konechnykh deformatsii”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. fiz.-matem. nauki, 19, avgust (2003), 163–164

[17] Auricchio F., Taylor R. L., “A return-map algorithm for general associative isotropic elasto-plastic materials in large deformation regimes”, Int. J. Plasticity, 15:12 (1999), 1359–1378 | DOI | Zbl

[18] Auricchio F., “A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model”, Int. J. Plasticity, 17:7 (2001), 971–990 | DOI | Zbl

[19] Kleuter B., Menzel A., Steinmann P., “Generalized parameter identification for finite viscoelasticity”, Comput. Meth. Appl. Mech. Eng., 196:35–36 (2007), 3315–3334 | DOI | MR | Zbl

[20] Ibrahimbegovic A., Chorfi L., “Viscoplasticity model at finite deformations with combined isotropic and kinematic hardening”, Comput. Struct., 77:5 (2000), 509–525 | DOI

[21] Betsch P., Stein E., “Numerical implementation of multiplicative elasto-plasticity into assumed strain elements with application to shells at large strains”, Comput. Meth. Appl. Mech. Eng., 179:3–4 (1999), 215–245 | DOI | MR | Zbl

[22] Sedov L. I., Vvedenie v mekhaniku sploshnoi sredy, Fizmatgiz, M., 1962 | MR

[23] Kleiber M., König J. A., Sawczuk A., “Studies on plastic structures: stability, anisotropic hardening cyclic loads”, Comput. Meth. Appl. Mech. Eng., 33:1–3 (1982), 487–556 | DOI | MR | Zbl

[24] Nactegaal J. C., De Long J. E., “Some computational aspect of elastic-plastic large strain analysis”, Int. J. Numer. Meth. Eng., 17:1 (1981), 15–41 | DOI

[25] Wang W. M., Sluys L. J., “Formulation of an implicit algorithm for finite deformation viscoplasticity”, Int. J. Solids Struct., 37:48–50 (2000), 7329–7348 | DOI | Zbl

[26] Green A. E., Naghdi P. M., “Some remarks on elastic-plastic deformation at finite strain”, Int. J. Eng. Sci., 9:12 (1971), 1219–1229 | DOI | Zbl

[27] Zbib H. M., “On the mechanics of large inelastic deformations: kinematics and constitutive modeling”, Acta Mech., 96:1–4 (1993), 119–138 | DOI | MR | Zbl

[28] Chernyshov A. D., “Opredelyayuschie uravneniya dlya uprugoplasticheskogo tela pri konechnykh deformatsiyakh”, Izv. RAN. MTT, 2000, no. 1, 120–128

[29] Hackenberg H.-P., Kollmann F. G., “A general theory of finite inelastic deformation of metals based on the concept of unified constitutive models”, Acta Mech., 110:1–4 (1995), 217–239 | DOI | MR | Zbl

[30] Helm D., “Stress computation in finite thermoviscoplasticity”, Int. J. Plasticity, 22:9 (2006), 1699–1727 | DOI | Zbl

[31] Bier W., Hartmann S., “A finite strain constitutive model for metal powder compaction using a unique and convex single surface yield function”, Europ. J. Mech. A Solids, 25:6 (2006), 1009–1030 | DOI | Zbl

[32] Eterovic A. L., Bathe K.-J., “A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures”, Int. J. Numer. Meth. Eng., 30:6 (1990), 1099–1114 | DOI | Zbl

[33] Arif A. F. M., Pervez T., Mughal M. P., “Performance of a finite element procedure for hyperelastic-viscoplastic large deformation problems”, Finite Elem. Anal. Design, 34:1 (2000), 89–112 | DOI | Zbl

[34] Tvergaard V., “Effect of large elastic strain on cavitations instability prediction for elastic-plastic solids”, Int. J. Solids Struct., 36:35 (1999), 5453–5466 | DOI | MR | Zbl

[35] Barja R. I., “Bifurcation of elastoplastic solids to shear band mode at finite strain”, Comput. Meth. Appl. Mech. Eng., 191:46 (2002), 5287–5314 | DOI | MR

[36] Miehe C., “A theory of large-strain isotropic thermoplastisity based on metric transformation tensor”, Arch. Appl. Mech., 66:1–2 (1995), 45–64 | Zbl

[37] Harrysson M., Ristinmaa M., “Description of evolving anisotropy at large strains”, Mech. Materials, 39:3 (2007), 267–282 | DOI

[38] Harrysson M., Harrysson A., Ristinmaa M., “Spatial representation of evolving anisotropy at large strains”, Int. J. Solids Struct., 44:10 (2007), 3514–3532 | DOI | Zbl

[39] Golovanov A. I., Kuznetsov S. A., “Raschet bolshikh deformatsii neuprugikh tel v kombinirovannoi Lagranzhevo–Eilerovoi postanovke”, Obzornye doklady i lektsii XVI sessii Mezhdunarodnoi shkoly po problemam mekhaniki sploshnoi sredy “Modeli mekhaniki sploshnoi sredy” (Kazan, 2002), Tr. matem. tsentra im. N. I. Lobachevskogo, 15, 2002, 5–27 | MR | Zbl

[40] Basar Y., Itskov M., “Constitutive model and finite element formulation for large strain elasto-plastic analysis of shell”, Comput. Mech., 23:5–6 (1999), 466–481 | Zbl

[41] Basar Y., Eckstein A., “Large inelastic strain analysis by multilayer shell elements”, Acta Mech., 141:3–4 (2000), 225–252 | DOI | Zbl

[42] Nedjar B., “Frameworks for finite strain viscoelasticity based on multiplicative decompositions. Part I: Continuum formulations”, Comput. Meth. Appl. Mech. Eng., 191:15–16 (2002), 1541–1562 | DOI | Zbl

[43] Nedjar B., “Frameworks for finite strain viscoelasticity based on multiplicative decompositions. Part II: Computational aspects”, Comput. Meth. Appl. Mech. Eng., 191:15–16 (2002), 1563–1593 | DOI | Zbl

[44] Miehe C., Apel N., Lambrecht M., “Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials”, Comput. Meth. Appl. Mech. Eng., 191:47–48 (2002), 5383–5425 | DOI | MR | Zbl

[45] Lin R. C., Brocks W., “On a finite strain viscoplastic theory based on a new internal dissipation inequality”, Int. J. Plasticity, 20:7 (2004), 1281–1311 | DOI | Zbl

[46] Lin R. C., Brocks W., Betten J., “On internal dissipation inequalities and finite strain inelastic constitutive laws: Theoretical and numerical comparisons”, Int. J. Plasticity, 22:10 (2006), 1825–1857 | DOI | Zbl

[47] Scheck B., Stumpf H., “The appropriate corotational rate, exact formula for the plastic spin and constitutive model for finite elasto-plasticity”, Int. J. Solids Struct., 32:24 (1995), 3643–3667 | DOI | MR

[48] Scheck B., Smolenski W. M., Stumpf H., “A shell finite element for large strain elastoplasticity with anisotropies. Part I: Shell theory and variational principle”, Int. J. Solids Struct., 36:35 (1999), 5399–5424 | DOI

[49] Schick B., Smolenski W. M., Stumpf H., “A shell finite element for large strain elastoplasticity with anisotropies. Part II: Constitutive equations and numerical applications”, Int. J. Solids Struct., 36:35 (1999), 5425–5451 | DOI

[50] Ghavam K., Naghdabadi R., “Hardening materials modeling in finite elastic-plastic deformations based on the stretch tensor decomposition”, Mater. Design, 29:1 (2008), 161–172 | DOI