Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_7_a1, author = {A. I. Golovanov}, title = {Kinematics of finite elastoplastic deformations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {16--30}, publisher = {mathdoc}, number = {7}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_7_a1/} }
A. I. Golovanov. Kinematics of finite elastoplastic deformations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2010), pp. 16-30. http://geodesic.mathdoc.fr/item/IVM_2010_7_a1/
[1] Eliseev V. V., Mekhanika uprugikh tel, SPbGPU, SPb., 1999
[2] Korobeinikov S. N., Nelineinoe deformirovanie tverdykh tel, SO RAN, Novosibirsk, 2000
[3] Levitas V. I., Bolshie uprugoplasticheskie deformatsii materialov pri vysokom davlenii, Nauk. dumka, Kiev, 1987 | Zbl
[4] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR
[5] Pozdeev A. A., Trusov P. V., Nyashin Yu. I., Bolshie uprugoplasticheskie deformatsii: teoriya, algoritm, prilozheniya, Nauka, M., 1986 | MR | Zbl
[6] Rabotyagov D. D., Mekhanika materialov pri bolshikh deformatsiyakh, Shtiintsa, Kishinev, 1975
[7] Simo J. S., “A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. I: Continuum formulation”, Comput. Meth. Appl. Mech. Eng., 66:2 (1988), 199–219 | DOI | MR | Zbl
[8] Xiao H., Bruhns O. T., Meyers A., “Logarithmic strain, logarithmic spin and logarithmic rate”, Acta Mech., 124:1–4 (1997), 89–105 | DOI | MR | Zbl
[9] Xiao H., Bruhns O. T., Meyers A., “A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and deformation gradient”, Int. J. Plasticity, 16:2 (2000), 143–177 | DOI | Zbl
[10] Xiao H., Chen L.-S., “Hencky's logarithmic strain and dual stress-strain and strain-stress relations in isotropic finite hyperelasticity”, Int. J. Solids Struct., 40:6 (2003), 1455–1463 | DOI | Zbl
[11] Xiao H., Bruhns O. T., Meyers A., “Thermodynamic laws and consistent Eulerian formulation of finite elasto-plasticity with thermal effects”, J. Mech. Phys. Solids, 55:2 (2007), 338–365 | DOI | MR | Zbl
[12] Markin A. A., Khristich D. V., Sokolova M. Yu., “Sootnosheniya nelineinoi termouprugosti v variatsionnoi forme”, Tr. Vseross. nauch. konf. “Matem. modelirovanie i kraevye zadachi”, Ch. 1, Samara, 2004, 139–142
[13] Markin A. A., Sokolova M. Yu., “Variant opredelyayuschikh sootnoshenii nelineinoi termouprugosti anizotropnykh tel”, PMTF, 44:1 (2003), 170–175 | Zbl
[14] Sansour C., “On the dual variable of the logarithmic strain tensor, the dual variable of the Cauchy stress tensor, and related issues”, Int. J. Solids Struct., 38 (2001), 9221–9232 | DOI | MR | Zbl
[15] Kadashevich Yu. I., Pomytkin S. P., “Rol mery deformatsii pri postroenii endokhronnykh variantov teorii plastichnosti, uchityvayuschei konechnye deformatsii”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. fiz.-matem. nauki, 12, mart (2001), 91–93
[16] Kadashevich Yu. I., Pomytkin S. P., “Opisanie effektov vtorogo poryadka pri uchete konechnykh deformatsii”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. fiz.-matem. nauki, 19, avgust (2003), 163–164
[17] Auricchio F., Taylor R. L., “A return-map algorithm for general associative isotropic elasto-plastic materials in large deformation regimes”, Int. J. Plasticity, 15:12 (1999), 1359–1378 | DOI | Zbl
[18] Auricchio F., “A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model”, Int. J. Plasticity, 17:7 (2001), 971–990 | DOI | Zbl
[19] Kleuter B., Menzel A., Steinmann P., “Generalized parameter identification for finite viscoelasticity”, Comput. Meth. Appl. Mech. Eng., 196:35–36 (2007), 3315–3334 | DOI | MR | Zbl
[20] Ibrahimbegovic A., Chorfi L., “Viscoplasticity model at finite deformations with combined isotropic and kinematic hardening”, Comput. Struct., 77:5 (2000), 509–525 | DOI
[21] Betsch P., Stein E., “Numerical implementation of multiplicative elasto-plasticity into assumed strain elements with application to shells at large strains”, Comput. Meth. Appl. Mech. Eng., 179:3–4 (1999), 215–245 | DOI | MR | Zbl
[22] Sedov L. I., Vvedenie v mekhaniku sploshnoi sredy, Fizmatgiz, M., 1962 | MR
[23] Kleiber M., König J. A., Sawczuk A., “Studies on plastic structures: stability, anisotropic hardening cyclic loads”, Comput. Meth. Appl. Mech. Eng., 33:1–3 (1982), 487–556 | DOI | MR | Zbl
[24] Nactegaal J. C., De Long J. E., “Some computational aspect of elastic-plastic large strain analysis”, Int. J. Numer. Meth. Eng., 17:1 (1981), 15–41 | DOI
[25] Wang W. M., Sluys L. J., “Formulation of an implicit algorithm for finite deformation viscoplasticity”, Int. J. Solids Struct., 37:48–50 (2000), 7329–7348 | DOI | Zbl
[26] Green A. E., Naghdi P. M., “Some remarks on elastic-plastic deformation at finite strain”, Int. J. Eng. Sci., 9:12 (1971), 1219–1229 | DOI | Zbl
[27] Zbib H. M., “On the mechanics of large inelastic deformations: kinematics and constitutive modeling”, Acta Mech., 96:1–4 (1993), 119–138 | DOI | MR | Zbl
[28] Chernyshov A. D., “Opredelyayuschie uravneniya dlya uprugoplasticheskogo tela pri konechnykh deformatsiyakh”, Izv. RAN. MTT, 2000, no. 1, 120–128
[29] Hackenberg H.-P., Kollmann F. G., “A general theory of finite inelastic deformation of metals based on the concept of unified constitutive models”, Acta Mech., 110:1–4 (1995), 217–239 | DOI | MR | Zbl
[30] Helm D., “Stress computation in finite thermoviscoplasticity”, Int. J. Plasticity, 22:9 (2006), 1699–1727 | DOI | Zbl
[31] Bier W., Hartmann S., “A finite strain constitutive model for metal powder compaction using a unique and convex single surface yield function”, Europ. J. Mech. A Solids, 25:6 (2006), 1009–1030 | DOI | Zbl
[32] Eterovic A. L., Bathe K.-J., “A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures”, Int. J. Numer. Meth. Eng., 30:6 (1990), 1099–1114 | DOI | Zbl
[33] Arif A. F. M., Pervez T., Mughal M. P., “Performance of a finite element procedure for hyperelastic-viscoplastic large deformation problems”, Finite Elem. Anal. Design, 34:1 (2000), 89–112 | DOI | Zbl
[34] Tvergaard V., “Effect of large elastic strain on cavitations instability prediction for elastic-plastic solids”, Int. J. Solids Struct., 36:35 (1999), 5453–5466 | DOI | MR | Zbl
[35] Barja R. I., “Bifurcation of elastoplastic solids to shear band mode at finite strain”, Comput. Meth. Appl. Mech. Eng., 191:46 (2002), 5287–5314 | DOI | MR
[36] Miehe C., “A theory of large-strain isotropic thermoplastisity based on metric transformation tensor”, Arch. Appl. Mech., 66:1–2 (1995), 45–64 | Zbl
[37] Harrysson M., Ristinmaa M., “Description of evolving anisotropy at large strains”, Mech. Materials, 39:3 (2007), 267–282 | DOI
[38] Harrysson M., Harrysson A., Ristinmaa M., “Spatial representation of evolving anisotropy at large strains”, Int. J. Solids Struct., 44:10 (2007), 3514–3532 | DOI | Zbl
[39] Golovanov A. I., Kuznetsov S. A., “Raschet bolshikh deformatsii neuprugikh tel v kombinirovannoi Lagranzhevo–Eilerovoi postanovke”, Obzornye doklady i lektsii XVI sessii Mezhdunarodnoi shkoly po problemam mekhaniki sploshnoi sredy “Modeli mekhaniki sploshnoi sredy” (Kazan, 2002), Tr. matem. tsentra im. N. I. Lobachevskogo, 15, 2002, 5–27 | MR | Zbl
[40] Basar Y., Itskov M., “Constitutive model and finite element formulation for large strain elasto-plastic analysis of shell”, Comput. Mech., 23:5–6 (1999), 466–481 | Zbl
[41] Basar Y., Eckstein A., “Large inelastic strain analysis by multilayer shell elements”, Acta Mech., 141:3–4 (2000), 225–252 | DOI | Zbl
[42] Nedjar B., “Frameworks for finite strain viscoelasticity based on multiplicative decompositions. Part I: Continuum formulations”, Comput. Meth. Appl. Mech. Eng., 191:15–16 (2002), 1541–1562 | DOI | Zbl
[43] Nedjar B., “Frameworks for finite strain viscoelasticity based on multiplicative decompositions. Part II: Computational aspects”, Comput. Meth. Appl. Mech. Eng., 191:15–16 (2002), 1563–1593 | DOI | Zbl
[44] Miehe C., Apel N., Lambrecht M., “Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials”, Comput. Meth. Appl. Mech. Eng., 191:47–48 (2002), 5383–5425 | DOI | MR | Zbl
[45] Lin R. C., Brocks W., “On a finite strain viscoplastic theory based on a new internal dissipation inequality”, Int. J. Plasticity, 20:7 (2004), 1281–1311 | DOI | Zbl
[46] Lin R. C., Brocks W., Betten J., “On internal dissipation inequalities and finite strain inelastic constitutive laws: Theoretical and numerical comparisons”, Int. J. Plasticity, 22:10 (2006), 1825–1857 | DOI | Zbl
[47] Scheck B., Stumpf H., “The appropriate corotational rate, exact formula for the plastic spin and constitutive model for finite elasto-plasticity”, Int. J. Solids Struct., 32:24 (1995), 3643–3667 | DOI | MR
[48] Scheck B., Smolenski W. M., Stumpf H., “A shell finite element for large strain elastoplasticity with anisotropies. Part I: Shell theory and variational principle”, Int. J. Solids Struct., 36:35 (1999), 5399–5424 | DOI
[49] Schick B., Smolenski W. M., Stumpf H., “A shell finite element for large strain elastoplasticity with anisotropies. Part II: Constitutive equations and numerical applications”, Int. J. Solids Struct., 36:35 (1999), 5425–5451 | DOI
[50] Ghavam K., Naghdabadi R., “Hardening materials modeling in finite elastic-plastic deformations based on the stretch tensor decomposition”, Mater. Design, 29:1 (2008), 161–172 | DOI