On a~measure of quasistability of a~certain vector linearly combinatorial Boolean problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 8-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a multicriterion problem of finding the Pareto set in the case when linear forms (functions) are minimized both on a set of substitutions and on a set of Boolean vectors. We obtain a formula for the radius of that type of the problem stability (with respect to perturbations of parameters of a vector criterion) that guarantees the preservation of all Pareto optimal solutions of the initial problem and allows the occurrence of new ones.
Keywords: linearly combinatorial Boolean problem, vector objective function, Pareto set, quasistability radius, perturbing matrix.
@article{IVM_2010_5_a1,
     author = {V. A. Emelichev and A. V. Karpuk and K. G. Kuz'min},
     title = {On a~measure of quasistability of a~certain vector linearly combinatorial {Boolean} problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {8--17},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_5_a1/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - A. V. Karpuk
AU  - K. G. Kuz'min
TI  - On a~measure of quasistability of a~certain vector linearly combinatorial Boolean problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 8
EP  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_5_a1/
LA  - ru
ID  - IVM_2010_5_a1
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A A. V. Karpuk
%A K. G. Kuz'min
%T On a~measure of quasistability of a~certain vector linearly combinatorial Boolean problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 8-17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_5_a1/
%G ru
%F IVM_2010_5_a1
V. A. Emelichev; A. V. Karpuk; K. G. Kuz'min. On a~measure of quasistability of a~certain vector linearly combinatorial Boolean problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 8-17. http://geodesic.mathdoc.fr/item/IVM_2010_5_a1/

[1] Ehrgott M., Gandibleux X., “A survey and annotated bibliography of multiobjective combinatorial optimization”, OR Spektrum, 22:4 (2000), 425–460 | MR | Zbl

[2] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58:2 (1995), 169–190 | DOI | MR | Zbl

[3] Sotskov Yu. N., Sotskova N. Yu., Teoriya raspisanii. Sistemy s neopredelennymi chislovymi parametrami, OIPI NAN Belarusi, Minsk, 2004, 290 pp.

[4] Emelichev V. A., Podkopaev D. P., “Ustoichivost i regulyarizatsiya vektornykh zadach tselochislennogo lineinogo programmirovaniya”, Diskret. analiz i issled. oper. Ser. 2, 8:1 (2001), 47–69 | MR | Zbl

[5] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl

[6] Bukhtoyarov S. E., Emelichev V. A., “O kvaziustoichivosti vektornoi traektornoi zadachi s parametricheskim printsipom optimalnosti”, Izv. vuzov. Matematika, 2004, no. 1, 25–30 | MR | Zbl

[7] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “Ob odnom tipe ustoichivosti vektornoi kombinatornoi zadachi s chastnymi kriteriyami vida $\Sigma$-MINMAX i $\Sigma$-MINMIN”, Izv. vuzov. Matematika, 2004, no. 12, 17–27 | MR

[8] Emelichev V. A., Kuzmin K. G., “Mera kvaziustoichivosti v metrike $l_1$ vektornoi kombinatornoi zadachi s parametricheskim printsipom optimalnosti”, Izv. vuzov. Matematika, 2005, no. 12, 3–10 | MR

[9] Greenberg H. J., “An annotated bibliography for post-solution analysis in mixed integer programming and combinatorial optimization”, Advances in computational and stochastic optimization, logic programming and heuristic search, eds. D. L. Woodruff, Kluwer Academic Publishers, Boston, 1998, 97–148 | MR

[10] Karpuk A. V., Kuzmin K. G., “O kvaziustoichivosti odnoi vektornoi zadachi buleva programmirovaniya”, Tez. dokl. VI Mezhdunarodn. nauch.-tekhn. konf. “Dinamika sistem, mekhanizmov i mashin”, OmGTU, Omsk, 2007, 39–41

[11] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972, 368 pp. | MR

[12] Gorokh O. V., “Ob odnoi lineino-kombinatornoi zadache”, Dokl. Vtoroi nauch. konf. “Tanaevskie chteniya”, OIPI NAN Belarusi, Minsk, 2005, 28–31

[13] Gorokh O. V., “O reshenii lineino-kombinatornoi zadachi s intervalnoi oblastyu”, Dokl. Tretei nauch. konf. “Tanaevskie chteniya”, OIPI NAN Belarusi, Minsk, 2007, 35–39

[14] Emelichev V. A., Krichko V. N., Nikulin Yu. V., “Formula radiusa kvaziustoichivosti vektornoi minimaksnoi zadachi buleva programmirovaniya”, Dokl. NAN Belarusi, 46:1 (2002), 37–40 | MR | Zbl

[15] Sergienko I. V., Shilo V. P., Zadachi diskretnoi optimizatsii. Problemy, metody resheniya, issledovaniya, Nauk. dumka, Kiev, 2003, 261 pp.

[16] Tanino T., Sawaragi Y., “Stability of nondominated solutions in multicriteria decision-making”, J. Optimization Theory Appl., 30 (1980), 229–253 | DOI | MR | Zbl

[17] Emelichev V. A., Kravtsov M. K., Podkopaev D. P., “O kvaziustoichivosti traektornykh zadach vektornoi optimizatsii”, Matem. zametki, 63:1 (1998), 21–27 | MR | Zbl

[18] Smale S., “Global analysis and economics. V: Pareto theory with constraints”, J. Math. Econom., 1 (1974), 213–221 | DOI | MR | Zbl