On a~measure of quasistability of a~certain vector linearly combinatorial Boolean problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 8-17
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a multicriterion problem of finding the Pareto set in the case when linear forms (functions) are minimized both on a set of substitutions and on a set of Boolean vectors. We obtain a formula for the radius of that type of the problem stability (with respect to perturbations of parameters of a vector criterion) that guarantees the preservation of all Pareto optimal solutions of the initial problem and allows the occurrence of new ones.
Keywords:
linearly combinatorial Boolean problem, vector objective function, Pareto set, quasistability radius, perturbing matrix.
@article{IVM_2010_5_a1,
author = {V. A. Emelichev and A. V. Karpuk and K. G. Kuz'min},
title = {On a~measure of quasistability of a~certain vector linearly combinatorial {Boolean} problem},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {8--17},
publisher = {mathdoc},
number = {5},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_5_a1/}
}
TY - JOUR AU - V. A. Emelichev AU - A. V. Karpuk AU - K. G. Kuz'min TI - On a~measure of quasistability of a~certain vector linearly combinatorial Boolean problem JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 8 EP - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_5_a1/ LA - ru ID - IVM_2010_5_a1 ER -
%0 Journal Article %A V. A. Emelichev %A A. V. Karpuk %A K. G. Kuz'min %T On a~measure of quasistability of a~certain vector linearly combinatorial Boolean problem %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2010 %P 8-17 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2010_5_a1/ %G ru %F IVM_2010_5_a1
V. A. Emelichev; A. V. Karpuk; K. G. Kuz'min. On a~measure of quasistability of a~certain vector linearly combinatorial Boolean problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2010), pp. 8-17. http://geodesic.mathdoc.fr/item/IVM_2010_5_a1/