Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_4_a8, author = {M. M. Yamaleev}, title = {Strong noncuppability in low computably enumerabele degrees}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {83--95}, publisher = {mathdoc}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_4_a8/} }
M. M. Yamaleev. Strong noncuppability in low computably enumerabele degrees. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2010), pp. 83-95. http://geodesic.mathdoc.fr/item/IVM_2010_4_a8/
[1] Soar R. I., Vychislimo-perechislimye mnozhestva i stepeni, Kazansk. matem. o-vo, Kazan, 2000, 576 pp. | MR | Zbl
[2] Miller D. P., “High recursively enumerable degrees and the anti-cupping property”, Lect. Notes Math., 859, 1981, 230–245 | MR | Zbl
[3] Cooper S. B., “The strong anticupping property for recursively enumerable degrees”, J. Symbolic Logic, 54:2 (1989), 527–539 | DOI | MR | Zbl
[4] Slaman T. A., Steel J. R., “Complementation in the Turing degrees”, J. Symbolic Logic, 54:1 (1989), 160–176 | DOI | MR | Zbl
[5] Arslanov M. M., “O strukture stepenei nizhe $\boldsymbol0'$”, Izv. vuzov. Matematika, 1988, no. 7, 27–33 | MR | Zbl
[6] Cooper S. B., Lempp S., Watson P., “Weak density and cupping in the d-c.e. degrees”, Israel J. of Math., 67 (1989), 137–152 | DOI | MR | Zbl