Strong noncuppability in low computably enumerabele degrees
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2010), pp. 83-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of noncomputable low computably emunerable degrees $\mathbf b\mathbf a$ such that $\mathbf b$ is strongly noncuppable to $\mathbf a$ in the class $\mathbf R$.
Keywords: computably emunerable sets, Turing degrees, low degrees, noncuppability.
@article{IVM_2010_4_a8,
     author = {M. M. Yamaleev},
     title = {Strong noncuppability in low computably enumerabele degrees},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {83--95},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_4_a8/}
}
TY  - JOUR
AU  - M. M. Yamaleev
TI  - Strong noncuppability in low computably enumerabele degrees
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 83
EP  - 95
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_4_a8/
LA  - ru
ID  - IVM_2010_4_a8
ER  - 
%0 Journal Article
%A M. M. Yamaleev
%T Strong noncuppability in low computably enumerabele degrees
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 83-95
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_4_a8/
%G ru
%F IVM_2010_4_a8
M. M. Yamaleev. Strong noncuppability in low computably enumerabele degrees. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2010), pp. 83-95. http://geodesic.mathdoc.fr/item/IVM_2010_4_a8/

[1] Soar R. I., Vychislimo-perechislimye mnozhestva i stepeni, Kazansk. matem. o-vo, Kazan, 2000, 576 pp. | MR | Zbl

[2] Miller D. P., “High recursively enumerable degrees and the anti-cupping property”, Lect. Notes Math., 859, 1981, 230–245 | MR | Zbl

[3] Cooper S. B., “The strong anticupping property for recursively enumerable degrees”, J. Symbolic Logic, 54:2 (1989), 527–539 | DOI | MR | Zbl

[4] Slaman T. A., Steel J. R., “Complementation in the Turing degrees”, J. Symbolic Logic, 54:1 (1989), 160–176 | DOI | MR | Zbl

[5] Arslanov M. M., “O strukture stepenei nizhe $\boldsymbol0'$”, Izv. vuzov. Matematika, 1988, no. 7, 27–33 | MR | Zbl

[6] Cooper S. B., Lempp S., Watson P., “Weak density and cupping in the d-c.e. degrees”, Israel J. of Math., 67 (1989), 137–152 | DOI | MR | Zbl