Infinitesimal harmonic transformations and Ricci solitons on complete Riemannian manifolds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 97-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

The definition of a Ricci soliton was introduced by R. Hamilton; it naturally generalizes the Einstein metric. A Ricci soliton on a smooth manifold $M$ is the triplet $(g_0,\xi,\lambda)$, where $g_0$ is a complete Riemannian metric, $\xi$ is a vector field, and $\lambda$ is a constant value such that the Ricci tensor $\mathrm{Ric}_0$ of the metric $g_0$ satisfies the equation $-2\mathrm{Ric}_0=L_\xi g_0+2\lambda g_0$. The following assertion is one of the main results of this paper. Assume that $(g_0,\xi,\lambda)$ is a Ricci soliton such that $(M,g_0)$ is a compete noncompact oriented Riemannian manifold, $\int_M\|\xi\|\,dv\infty$, and the scalar curvature $s_0$ of the metric $g_0$ has a constant sign on $M$. Then $(M,g_0)$ is an Einstein manifold.
Mots-clés : Ricci solitons
Keywords: infinitesimal harmonic transformations, complete Riemannian manifold.
@article{IVM_2010_3_a12,
     author = {S. E. Stepanov and I. I. Tsyganok},
     title = {Infinitesimal harmonic transformations and {Ricci} solitons on complete {Riemannian} manifolds},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {97--101},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_3_a12/}
}
TY  - JOUR
AU  - S. E. Stepanov
AU  - I. I. Tsyganok
TI  - Infinitesimal harmonic transformations and Ricci solitons on complete Riemannian manifolds
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 97
EP  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_3_a12/
LA  - ru
ID  - IVM_2010_3_a12
ER  - 
%0 Journal Article
%A S. E. Stepanov
%A I. I. Tsyganok
%T Infinitesimal harmonic transformations and Ricci solitons on complete Riemannian manifolds
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 97-101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_3_a12/
%G ru
%F IVM_2010_3_a12
S. E. Stepanov; I. I. Tsyganok. Infinitesimal harmonic transformations and Ricci solitons on complete Riemannian manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 97-101. http://geodesic.mathdoc.fr/item/IVM_2010_3_a12/

[1] Stepanov S. E., Shandra I. G., “Geometry of infinitesimal harmonic transformations”, Annals of Global Analysis and Geometry, 24:3 (2003), 291–299 | DOI | MR | Zbl

[2] Stepanov S. E., Shandra I. G., “Garmonicheskie diffeomorfizmy mnogoobrazii”, Algebra i analiz, 16:2 (2004), 154–171 | MR | Zbl

[3] Smolnikova M. V., Stepanov S. E., Shandra I. G., “Infinitezimalnye garmonicheskie preobrazovaniya”, Izv. vuzov. Matematika, 2004, no. 5, 69–75 | MR | Zbl

[4] Stepanov S. E., Shelepova V. N., “Zametka o solitonakh Richchi”, Matem. zametki, 86:3 (2009), 474–477

[5] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981, 344 pp. | MR

[6] Yano K., Bokhner S., Krivizna i chisla Betti, In. lit., M., 1957, 152 pp.

[7] Yau S.-T., “Some function-theoretic properties of complete Riemannian manifold and their applications to geometry”, Indiana Univ. Math. J., 25:7 (1976), 659–670 | DOI | MR | Zbl

[8] Chow B., Knopf D., The Ricci flow: An introduction, Mathematical surveys and monographs, 110, American Mathematical Society, 2004, 325 pp. | MR | Zbl

[9] Chow B., Lu P., Ni L., “Hamilton's Ricci flow”, Graduate studies in mathematics, 77, Amer. Math. Soc. Sci. Press, 2006, 608 pp. | MR | Zbl

[10] Eminenti M., La Nave G., Mantegazza C., “Ricci solitons – the equation point of view”, Manuscripta Mathematica, 127:3 (2008), 345–367 | DOI | MR | Zbl

[11] Stepanov S. E., Shandra I. G., Shelepova V. N., “Infinitezimalnye garmonicheskie preobrazovaniya i solitony Richchi”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 151, no. 4, 2009, 150–159

[12] Caminha A., Sousa P., Camargo F., Complete foliations of space forms by hypersurfaces, [elektronnyi resurs] , 6 Aug. 2009, 11 pp. arxiv: 0908.0786v1[math.DG]

[13] Caminha A., The geometry of closed conformal vector fields on Riemannian spaces, [elektronnyi resurs] , 11 Aug. 2009, 14 pp. arxiv: 0908.1447v1[math.DG]

[14] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979, 280 pp. | MR

[15] Gromol D., Klingenberg V., Meier V., Rimanova geometriya v tselom, Mir, M., 1971, 434 pp.

[16] Besse A., Mnogoobraziya Einshteina, T. 1, Mir, M., 1990, 318 pp. | MR | Zbl

[17] Pigola P., Rimodl M., Setti A. g., Remarks on non-compact gradient Ricci solitons, [elektronnyi resurs] , 18 May 2009, 14 pp. arxiv: 0905.2868v1[math.DG]