Stability of the coincidence set of a~solution to a~parabolic variational inequality with an obstacle
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 88-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose a new technique for the stability analysis of the coincidence set of a solution to a parabolic variational inequality with an obstacle inside the domain. It is based on the reformulation of the initial inequality in the form of a parabolic initial boundary value problem with an exact penalty operator.
Keywords: variational inequality, obstacle problem, coincidence set, stability, capacity.
@article{IVM_2010_3_a10,
     author = {A. I. Mikheeva and R. Z. Dautov},
     title = {Stability of the coincidence set of a~solution to a~parabolic variational inequality with an obstacle},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {88--91},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_3_a10/}
}
TY  - JOUR
AU  - A. I. Mikheeva
AU  - R. Z. Dautov
TI  - Stability of the coincidence set of a~solution to a~parabolic variational inequality with an obstacle
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 88
EP  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_3_a10/
LA  - ru
ID  - IVM_2010_3_a10
ER  - 
%0 Journal Article
%A A. I. Mikheeva
%A R. Z. Dautov
%T Stability of the coincidence set of a~solution to a~parabolic variational inequality with an obstacle
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 88-91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_3_a10/
%G ru
%F IVM_2010_3_a10
A. I. Mikheeva; R. Z. Dautov. Stability of the coincidence set of a~solution to a~parabolic variational inequality with an obstacle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 88-91. http://geodesic.mathdoc.fr/item/IVM_2010_3_a10/

[1] Fridman A., Variatsionnye printsipy i zadachi so svobodnoi granitsei, Mir, M., 1990, 536 pp. | MR

[2] Caffarelli L. A., “A remark on the Hausdorff measure of a free boundary, and the convergence of coincidence sets”, Boll. Un. Mat. Ital. A, 18:1 (1981), 109–113 | MR | Zbl

[3] Lee K., Shahgholian H., “Hausdorff dimension and stability of the $p$-obstacle problem ($2

$)”, J. Differential Equations, 195:1 (2003), 14–24 | DOI | MR | Zbl

[4] Mikheeva A. I., Dautov R. Z., “O tochnosti metoda shtrafa dlya parabolicheskikh variatsionnykh neravenstv s prepyatstviem vnutri oblasti”, Izv. vuzov. Matematika, 2008, no. 2, 41–47 | MR