Stability of the coincidence set of a solution to a parabolic variational inequality with an obstacle
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 88-91
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we propose a new technique for the stability analysis of the coincidence set of a solution to a parabolic variational inequality with an obstacle inside the domain. It is based on the reformulation of the initial inequality in the form of a parabolic initial boundary value problem with an exact penalty operator.
Keywords:
variational inequality, obstacle problem, coincidence set, stability, capacity.
@article{IVM_2010_3_a10,
author = {A. I. Mikheeva and R. Z. Dautov},
title = {Stability of the coincidence set of a~solution to a~parabolic variational inequality with an obstacle},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {88--91},
year = {2010},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_3_a10/}
}
TY - JOUR AU - A. I. Mikheeva AU - R. Z. Dautov TI - Stability of the coincidence set of a solution to a parabolic variational inequality with an obstacle JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 88 EP - 91 IS - 3 UR - http://geodesic.mathdoc.fr/item/IVM_2010_3_a10/ LA - ru ID - IVM_2010_3_a10 ER -
%0 Journal Article %A A. I. Mikheeva %A R. Z. Dautov %T Stability of the coincidence set of a solution to a parabolic variational inequality with an obstacle %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2010 %P 88-91 %N 3 %U http://geodesic.mathdoc.fr/item/IVM_2010_3_a10/ %G ru %F IVM_2010_3_a10
A. I. Mikheeva; R. Z. Dautov. Stability of the coincidence set of a solution to a parabolic variational inequality with an obstacle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 88-91. http://geodesic.mathdoc.fr/item/IVM_2010_3_a10/
[1] Fridman A., Variatsionnye printsipy i zadachi so svobodnoi granitsei, Mir, M., 1990, 536 pp. | MR
[2] Caffarelli L. A., “A remark on the Hausdorff measure of a free boundary, and the convergence of coincidence sets”, Boll. Un. Mat. Ital. A, 18:1 (1981), 109–113 | MR | Zbl
[3] Lee K., Shahgholian H., “Hausdorff dimension and stability of the $p$-obstacle problem ($2
$)”, J. Differential Equations, 195:1 (2003), 14–24 | DOI | MR | Zbl[4] Mikheeva A. I., Dautov R. Z., “O tochnosti metoda shtrafa dlya parabolicheskikh variatsionnykh neravenstv s prepyatstviem vnutri oblasti”, Izv. vuzov. Matematika, 2008, no. 2, 41–47 | MR