Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_3_a10, author = {A. I. Mikheeva and R. Z. Dautov}, title = {Stability of the coincidence set of a~solution to a~parabolic variational inequality with an obstacle}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {88--91}, publisher = {mathdoc}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_3_a10/} }
TY - JOUR AU - A. I. Mikheeva AU - R. Z. Dautov TI - Stability of the coincidence set of a~solution to a~parabolic variational inequality with an obstacle JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 88 EP - 91 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_3_a10/ LA - ru ID - IVM_2010_3_a10 ER -
%0 Journal Article %A A. I. Mikheeva %A R. Z. Dautov %T Stability of the coincidence set of a~solution to a~parabolic variational inequality with an obstacle %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2010 %P 88-91 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2010_3_a10/ %G ru %F IVM_2010_3_a10
A. I. Mikheeva; R. Z. Dautov. Stability of the coincidence set of a~solution to a~parabolic variational inequality with an obstacle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 88-91. http://geodesic.mathdoc.fr/item/IVM_2010_3_a10/
[1] Fridman A., Variatsionnye printsipy i zadachi so svobodnoi granitsei, Mir, M., 1990, 536 pp. | MR
[2] Caffarelli L. A., “A remark on the Hausdorff measure of a free boundary, and the convergence of coincidence sets”, Boll. Un. Mat. Ital. A, 18:1 (1981), 109–113 | MR | Zbl
[3] Lee K., Shahgholian H., “Hausdorff dimension and stability of the $p$-obstacle problem ($2
$)”, J. Differential Equations, 195:1 (2003), 14–24 | DOI | MR | Zbl[4] Mikheeva A. I., Dautov R. Z., “O tochnosti metoda shtrafa dlya parabolicheskikh variatsionnykh neravenstv s prepyatstviem vnutri oblasti”, Izv. vuzov. Matematika, 2008, no. 2, 41–47 | MR