To the theory of operator monotone and operator convex functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 9-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a real function is operator monotone (operator convex) if the corresponding monotonicity (convexity) inequalities are valid for some normal state on the algebra of all bounded operators in an infinite-dimensional Hilbert space. We describe the class of convex operator functions with respect to a given von Neumann algebra in dependence of types of direct summands in this algebra. We prove that if a function from $\mathbb R^+$ into $\mathbb R^+$ is monotone with respect to a von Neumann algebra, then it is also operator monotone in the sense of the natural order on the set of positive self-adjoint operators affiliated with this algebra.
Keywords: operator monotone function, operator convex function, von Neumann algebra, $C^*$-algebra.
@article{IVM_2010_3_a1,
     author = {Dinh Trung Hoa and O. E. Tikhonov},
     title = {To the theory of operator monotone and operator convex functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {9--14},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_3_a1/}
}
TY  - JOUR
AU  - Dinh Trung Hoa
AU  - O. E. Tikhonov
TI  - To the theory of operator monotone and operator convex functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 9
EP  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_3_a1/
LA  - ru
ID  - IVM_2010_3_a1
ER  - 
%0 Journal Article
%A Dinh Trung Hoa
%A O. E. Tikhonov
%T To the theory of operator monotone and operator convex functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 9-14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_3_a1/
%G ru
%F IVM_2010_3_a1
Dinh Trung Hoa; O. E. Tikhonov. To the theory of operator monotone and operator convex functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 9-14. http://geodesic.mathdoc.fr/item/IVM_2010_3_a1/

[1] Osaka H., Silvestrov S. D., Tomiyama J., “Monotone operator functions on $C^*$-algebras”, Int. J. Math., 16:2 (2005), 181–196 | DOI | MR | Zbl

[2] Hansen F., Ji G., Tomiyama J., “Gaps between classes of matrix monotone functions”, Bull. London Math. Soc., 16:1 (2004), 53–58 | DOI | MR

[3] Bendat J., Sherman S., “Monotone and convex operator functions”, Trans. Amer. Math. Soc., 79:1 (1955), 58–71 | DOI | MR | Zbl

[4] Takesaki M., Theory of operator algebras, I, Springer-Verlag, New York, 1979, 415 pp. | MR

[5] Wegge-Olsen N. E., $K$-theory and $C^*$-algebras. A friendly approach, Oxford University Press, New York, 1993, 370 pp. | MR | Zbl

[6] Sakai S., $C^*$-algebras and $W^*$-algebras, Springer-Verlag, New York, 1971, 258 pp. | MR | Zbl

[7] Ji G., Tomiyama J., “On characterization of commutativity of $C^*$-algebras”, Proc. Amer. Math. Soc., 131:12 (2003), 3845–3849 | DOI | MR | Zbl

[8] Takesaki M., Theory of operator algebras, II, Springer-Verlag, New York, 2003, 518 pp. | MR | Zbl

[9] Sherstnev A. N., Metody bilineinykh form v nekommutativnoi teorii mery i integrala, Fizmatlit, M., 2008, 264 pp. | Zbl

[10] Pedersen G. K., Takesaki M., “The Radon–Nikodym theorem for von Neumann algebras”, Acta Math., 130:1–2 (1973), 53–87 | DOI | MR | Zbl