To the theory of operator monotone and operator convex functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 9-14

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a real function is operator monotone (operator convex) if the corresponding monotonicity (convexity) inequalities are valid for some normal state on the algebra of all bounded operators in an infinite-dimensional Hilbert space. We describe the class of convex operator functions with respect to a given von Neumann algebra in dependence of types of direct summands in this algebra. We prove that if a function from $\mathbb R^+$ into $\mathbb R^+$ is monotone with respect to a von Neumann algebra, then it is also operator monotone in the sense of the natural order on the set of positive self-adjoint operators affiliated with this algebra.
Keywords: operator monotone function, operator convex function, von Neumann algebra, $C^*$-algebra.
@article{IVM_2010_3_a1,
     author = {Dinh Trung Hoa and O. E. Tikhonov},
     title = {To the theory of operator monotone and operator convex functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {9--14},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_3_a1/}
}
TY  - JOUR
AU  - Dinh Trung Hoa
AU  - O. E. Tikhonov
TI  - To the theory of operator monotone and operator convex functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 9
EP  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_3_a1/
LA  - ru
ID  - IVM_2010_3_a1
ER  - 
%0 Journal Article
%A Dinh Trung Hoa
%A O. E. Tikhonov
%T To the theory of operator monotone and operator convex functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 9-14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_3_a1/
%G ru
%F IVM_2010_3_a1
Dinh Trung Hoa; O. E. Tikhonov. To the theory of operator monotone and operator convex functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2010), pp. 9-14. http://geodesic.mathdoc.fr/item/IVM_2010_3_a1/