Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_2_a7, author = {D. N. Tumakov}, title = {An over-determined boundary problem for the {Helmholtz} equation in a~semifinite domain with a~curvilinear boundary}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {77--85}, publisher = {mathdoc}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_2_a7/} }
TY - JOUR AU - D. N. Tumakov TI - An over-determined boundary problem for the Helmholtz equation in a~semifinite domain with a~curvilinear boundary JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 77 EP - 85 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_2_a7/ LA - ru ID - IVM_2010_2_a7 ER -
%0 Journal Article %A D. N. Tumakov %T An over-determined boundary problem for the Helmholtz equation in a~semifinite domain with a~curvilinear boundary %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2010 %P 77-85 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2010_2_a7/ %G ru %F IVM_2010_2_a7
D. N. Tumakov. An over-determined boundary problem for the Helmholtz equation in a~semifinite domain with a~curvilinear boundary. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 77-85. http://geodesic.mathdoc.fr/item/IVM_2010_2_a7/
[1] Zhang B., Chandler-Wilde S. N., “Acoustic scattering by an inhomogeneous layer on a rigid plate”, SIAM J. Appl. Math., 58:6 (1998), 1931–1950 | DOI | MR | Zbl
[2] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987, 311 pp. | MR
[3] Benali A., Chandezon J., Fontaine J., “A new theory for scattering of electromagnetic waves from conducting or dielectric rough surfaces”, IEEE Trans. Antennas and Propagation, 40 (1992), 141–148 | DOI
[4] Cao P., Macaskill C., “Iterative techniques for rough surface scattering problems”, Wave Motion, 21 (1995), 209–229 | DOI | Zbl
[5] Lipachëv E. K., “K priblizhennomu resheniyu kraevoi zadachi difraktsii voln na oblastyakh s beskonechnoi granitsei”, Izv. vuzov. Matematika, 2001, no. 4, 69–72 | MR | Zbl
[6] Lipachëv E. K., K priblizhennomu resheniyu kraevoi zadachi difraktsii voln na oblastyakh s beskonechnoi granitsei, Preprint PMF-05-01, Kazansk. matem. ob-vo, Kazan, 2005, 26 pp.
[7] Lipachëv E. K., “Reshenie zadachi Dirikhle dlya uravneniya Gelmgoltsa v oblastyakh s nerovnoi granitsei”, Izv. vuzov. Matematika, 2006, no. 9, 43–49 | MR
[8] Tumakov D. N., “Integralnoe uravnenie zadachi difraktsii elektromagnitnoi volny na krivolineinom metallicheskom ekrane”, Chislennye metody resheniya lineinykh i nelineinykh kraevykh zadach, Tr. Matem. tsentra im. N. I. Lobachevskogo, 13, Kazansk. matem. ob-vo, Kazan, 2001, 218–225
[9] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971, 512 pp. | MR | Zbl
[10] Brychkov Yu. A., Prudnikov A. P., Integralnye preobrazovaniya obobschennykh funktsii, Nauka, M., 1977, 288 pp. | MR | Zbl
[11] Khënl Kh., Maue A., Vestpfal K., Teoriya difraktsii, Mir, M., 1964, 428 pp.
[12] Pleschinskii N. B., Tumakov D. N., “Granichnye zadachi dlya uravneniya Gelmgoltsa v kvadrante i v poluploskosti, sostavlennoi iz dvukh kvadrantov”, Izv. vuzov. Matematika, 2004, no. 7, 63–74 | MR | Zbl