An over-determined boundary problem for the Helmholtz equation in a~semifinite domain with a~curvilinear boundary
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 77-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider an over-determined Cauchy problem for the Helmholtz equation in a semifinite domain with a piecewise smooth curvilinear boundary. Applying the Fourier transform method in the space of slow-growth distributions, we establish necessary and sufficient solvability conditions which connect the boundary functions. We construct integral representations of solutions.
Keywords: over-determined Cauchy problem, Helmholtz equation, space of slow-growth distributions.
Mots-clés : Fourier transform
@article{IVM_2010_2_a7,
     author = {D. N. Tumakov},
     title = {An over-determined boundary problem for the {Helmholtz} equation in a~semifinite domain with a~curvilinear boundary},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {77--85},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_2_a7/}
}
TY  - JOUR
AU  - D. N. Tumakov
TI  - An over-determined boundary problem for the Helmholtz equation in a~semifinite domain with a~curvilinear boundary
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 77
EP  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_2_a7/
LA  - ru
ID  - IVM_2010_2_a7
ER  - 
%0 Journal Article
%A D. N. Tumakov
%T An over-determined boundary problem for the Helmholtz equation in a~semifinite domain with a~curvilinear boundary
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 77-85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_2_a7/
%G ru
%F IVM_2010_2_a7
D. N. Tumakov. An over-determined boundary problem for the Helmholtz equation in a~semifinite domain with a~curvilinear boundary. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 77-85. http://geodesic.mathdoc.fr/item/IVM_2010_2_a7/

[1] Zhang B., Chandler-Wilde S. N., “Acoustic scattering by an inhomogeneous layer on a rigid plate”, SIAM J. Appl. Math., 58:6 (1998), 1931–1950 | DOI | MR | Zbl

[2] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987, 311 pp. | MR

[3] Benali A., Chandezon J., Fontaine J., “A new theory for scattering of electromagnetic waves from conducting or dielectric rough surfaces”, IEEE Trans. Antennas and Propagation, 40 (1992), 141–148 | DOI

[4] Cao P., Macaskill C., “Iterative techniques for rough surface scattering problems”, Wave Motion, 21 (1995), 209–229 | DOI | Zbl

[5] Lipachëv E. K., “K priblizhennomu resheniyu kraevoi zadachi difraktsii voln na oblastyakh s beskonechnoi granitsei”, Izv. vuzov. Matematika, 2001, no. 4, 69–72 | MR | Zbl

[6] Lipachëv E. K., K priblizhennomu resheniyu kraevoi zadachi difraktsii voln na oblastyakh s beskonechnoi granitsei, Preprint PMF-05-01, Kazansk. matem. ob-vo, Kazan, 2005, 26 pp.

[7] Lipachëv E. K., “Reshenie zadachi Dirikhle dlya uravneniya Gelmgoltsa v oblastyakh s nerovnoi granitsei”, Izv. vuzov. Matematika, 2006, no. 9, 43–49 | MR

[8] Tumakov D. N., “Integralnoe uravnenie zadachi difraktsii elektromagnitnoi volny na krivolineinom metallicheskom ekrane”, Chislennye metody resheniya lineinykh i nelineinykh kraevykh zadach, Tr. Matem. tsentra im. N. I. Lobachevskogo, 13, Kazansk. matem. ob-vo, Kazan, 2001, 218–225

[9] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971, 512 pp. | MR | Zbl

[10] Brychkov Yu. A., Prudnikov A. P., Integralnye preobrazovaniya obobschennykh funktsii, Nauka, M., 1977, 288 pp. | MR | Zbl

[11] Khënl Kh., Maue A., Vestpfal K., Teoriya difraktsii, Mir, M., 1964, 428 pp.

[12] Pleschinskii N. B., Tumakov D. N., “Granichnye zadachi dlya uravneniya Gelmgoltsa v kvadrante i v poluploskosti, sostavlennoi iz dvukh kvadrantov”, Izv. vuzov. Matematika, 2004, no. 7, 63–74 | MR | Zbl