Differentiation of operators and optimality conditions in category interpretation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 66-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The general extremum theory essentially uses properties of operator derivatives. As an example we consider a system described by a nonlinear elliptic equation. In this system with large values of the nonlinearity parameter and large dimension of the domain the control-state mapping is not Gateaux differentiable. For this reason one cannot immediately differentiate the optimality criterion and establish the necessary optimality conditions by classical methods. However the mentioned mapping is extendedly differentiable. This allows one to obtain optimality conditions without constraints on parameters of the system. Concluding the paper, we interpret the optimality conditions with classical and extended derivatives within the theory of categories.
Keywords: optimality conditions, operator derivatives, nonlinear elliptic equation, categories.
@article{IVM_2010_2_a6,
     author = {S. Ya. Serovaiskii},
     title = {Differentiation of operators and optimality conditions in category interpretation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {66--76},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_2_a6/}
}
TY  - JOUR
AU  - S. Ya. Serovaiskii
TI  - Differentiation of operators and optimality conditions in category interpretation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 66
EP  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_2_a6/
LA  - ru
ID  - IVM_2010_2_a6
ER  - 
%0 Journal Article
%A S. Ya. Serovaiskii
%T Differentiation of operators and optimality conditions in category interpretation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 66-76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_2_a6/
%G ru
%F IVM_2010_2_a6
S. Ya. Serovaiskii. Differentiation of operators and optimality conditions in category interpretation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 66-76. http://geodesic.mathdoc.fr/item/IVM_2010_2_a6/

[1] Dubovitskii A. D., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, Zhurn. vychisl. matem. i matem. fiz., 5:3 (1965), 395–453 | Zbl

[2] Neustadt L. W., “An abstract variational theory with application to a broad class of optimization problems. I”, SIAM J. Control and Optim., 1966, no. 4, 505–527 | DOI | MR | Zbl

[3] Neustadt L. W., “An abstract variational theory with application to a broad class of optimization problems. II”, SIAM J. Control and Optim., 1967, no. 1, 90–137 | MR | Zbl

[4] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl

[5] Dmitruk A. V., Milyutin A. A., Osmolovskii N. P., “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6 (1980), 11–46 | MR | Zbl

[6] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988, 512 pp. | MR

[7] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 416 pp. | MR | Zbl

[8] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 596 pp. | MR | Zbl

[9] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 352 pp. | Zbl

[10] Ivanenko V. I., Melnik V. S., Variatsionnye metody v zadachakh upravleniya dlya sistem s raspredelennymi parametrami, Nauk. Dumka, Kiev, 1988, 284 pp. | MR | Zbl

[11] Raitum U. E., Zadachi optimalnogo upravleniya dlya ellipticheskikh uravnenii, Zinatne, Riga, 1989, 280 pp. | MR | Zbl

[12] Leblebicioglu M. K., Celebi A. O., “An optimal control problem with nonlinear elliptic state equations”, J. Math. Anal. Appl., 163:1 (1992), 178–205 | DOI | MR

[13] Alibert J. J., Raymond J. P., “Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded control”, Num. Funct. Anal. Optim., 18:3–4 (1997), 235–250 | DOI | MR | Zbl

[14] Casas E., Troltzsch F., Unger A., “Second order sufficient optimality conditions for some state-constrainted control problems of semilinear elliptic equations”, SIAM J. Contr. And Optim., 38:5 (2000), 1369–1381 | DOI | MR

[15] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987, 368 pp. | MR

[16] Tiba D., Optimal control of nonsmooth distributed parameter systems, Lecture Notes in Mathematics, 1459, Springer Verlag, Berlin, 1990, 159 pp. | MR | Zbl

[17] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 744 pp. | MR | Zbl

[18] Serovaiskii S. Ya., “Calculation of functional gradients and extended differentiation of operators”, J. of Inverse and Ill-Posed Problems, 13:4 (2005), 383–396 | DOI | MR

[19] Neittaanmaki P., Tiba D., Optimal control of nonlinear parabolic systems. Theory, algorithms, and applications, Marcel Dekker, New York, 1994, 400 pp. | MR

[20] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR | Zbl

[21] Serovaiskii S. Ya., “Differentsirovanie obratnoi funktsii v nenormirovannykh prostranstvakh”, Funkts. analiz i prilozh., 27:4 (1993), 84–87 | MR | Zbl

[22] Serovaiskii S. Ya., “Teorema ob obratnoi funktsii i rasshirennaya differentsiruemost v banakhovykh prostranstvakh”, Izv. vuzov. Matematika, 1995, no. 8, 39–49 | MR | Zbl

[23] Serovaiskii S. Ya., Optimizatsiya i differentsirovanie. T. 1. Minimizatsiya funktsionalov. Statsionarnye sistemy, Print-S, Almaty, 2006, 390 pp. | MR | Zbl

[24] Bukur I., Delyanu A., Vvedenie v teoriyu kategorii i funktorov, Mir, M., 1972, 260 pp. | MR

[25] L. A. Skornyakov (red.), Obschaya algebra, T. 2, Nauka, M., 1977, 480 pp.

[26] Kukhtenko A. I., “O teorii kategorii i toposov v zadachakh upravleniya”, Slozh. sistemy upravl., Kiev, 1989, 4–15

[27] Elkin V. I., “O kategoriyakh i osnovakh teorii nelineinykh upravlyaemykh dinamicheskikh sistem”, Differents. uravneniya, 38:11 (2002), 1467–1482 | MR | Zbl

[28] Averbukh V. I., Smolyanov O. G., “Teoriya differentsirovaniya v lineinykh topologicheskikh prostranstvakh”, UMN, 22:6 (1967), 201–260 | MR | Zbl