Some extremal problems for algebraic polynomials in loaded spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 53-65

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $$ \Pi _N^{(r)}(x)=\sum_{k=N-r+1}^Na_k^0x^k+\sum_{j=0}^{N-r}a_jx^j \quad(a_N^{(0)}>0) $$ be an algebraic polynomial with fixed coefficients $a_k^{(0)}$. For the $l$th derivative of the mentioned polynomial we solve the following extremal problems: in a loaded Jacobi space with the inner product $$ \langle f,g\rangle=\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1}\Gamma(\alpha+1)\Gamma(\beta+1)}\int_{-1}^1fg(1-x)^\alpha(1+x)^\beta\,dx+Lf(1)g(1)+Mf(-1)g(-1), $$ $(L,M\ge0)$, find $\inf\langle D^l[\Pi_N^{(r)}(x)],D^l[\Pi_N^{(r)}(x)]\rangle$ ($D=\frac d{dx}$, $0\le l\le N-r$) and calculate extremal polynomials.
Keywords: extremal problem, loaded spaces, loaded orthogonal polynomials, algebraic polynomials, classical Jacobi polynomials.
@article{IVM_2010_2_a5,
     author = {B. P. Osilenker},
     title = {Some extremal problems for algebraic polynomials in loaded spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {53--65},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_2_a5/}
}
TY  - JOUR
AU  - B. P. Osilenker
TI  - Some extremal problems for algebraic polynomials in loaded spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 53
EP  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_2_a5/
LA  - ru
ID  - IVM_2010_2_a5
ER  - 
%0 Journal Article
%A B. P. Osilenker
%T Some extremal problems for algebraic polynomials in loaded spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 53-65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_2_a5/
%G ru
%F IVM_2010_2_a5
B. P. Osilenker. Some extremal problems for algebraic polynomials in loaded spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 53-65. http://geodesic.mathdoc.fr/item/IVM_2010_2_a5/