A lower bound for the length of the shortest carefully synchronizing words
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2010), pp. 59-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a notion of careful synchronization for partial finite automata as a natural generalization of the synchronization notion for complete finite automata. We obtain a lower bound for the careful synchronization threshold for automata with a given number of states.
Keywords: finite automaton, partial finite automaton, synchronizability.
@article{IVM_2010_1_a5,
     author = {P. V. Martyugin},
     title = {A lower bound for the length of the shortest carefully synchronizing words},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--68},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_1_a5/}
}
TY  - JOUR
AU  - P. V. Martyugin
TI  - A lower bound for the length of the shortest carefully synchronizing words
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 59
EP  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_1_a5/
LA  - ru
ID  - IVM_2010_1_a5
ER  - 
%0 Journal Article
%A P. V. Martyugin
%T A lower bound for the length of the shortest carefully synchronizing words
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 59-68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_1_a5/
%G ru
%F IVM_2010_1_a5
P. V. Martyugin. A lower bound for the length of the shortest carefully synchronizing words. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2010), pp. 59-68. http://geodesic.mathdoc.fr/item/IVM_2010_1_a5/

[1] Černý J., “Poznámka k homogénnym eksperimentom s konečnými automatami”, Mat.-Fyz. Čas. Slovensk. Akad. Vied., 14:3 (1964), 208–216 | MR | Zbl

[2] Dubuc L., “Sur les automates circulaires et la conjecture de Černý”, RAIRO Inform. Theor. Appl., 32:1–3 (1998), 21–34 | MR

[3] Eppstein D., “Reset sequences for monotonic automata”, SIAM J. Comput., 19:3 (1990), 500–510 | DOI | MR | Zbl

[4] Kari J., “Synchronizing finite automata on Eulerian digraphs”, Theoret. Comput. Sci., 295:1–3 (2003), 223–232 | DOI | MR | Zbl

[5] Pin J.-E., “On two combinatorial problems arising from automata theory”, Ann. Discrete Math., 17 (1983), 535–548 | MR | Zbl

[6] Ito M., Shikishima-Tsuji K., “Some results on directable automata”, Lect. Notes Comp. Sci., 3113, 2004, 125–133 | MR | Zbl

[7] Ito M., Algebraic theory of automata and languages, World Scientific, Singapore, 2004, 200 pp. | MR