@article{IVM_2010_1_a5,
author = {P. V. Martyugin},
title = {A lower bound for the length of the shortest carefully synchronizing words},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {59--68},
year = {2010},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_1_a5/}
}
P. V. Martyugin. A lower bound for the length of the shortest carefully synchronizing words. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2010), pp. 59-68. http://geodesic.mathdoc.fr/item/IVM_2010_1_a5/
[1] Černý J., “Poznámka k homogénnym eksperimentom s konečnými automatami”, Mat.-Fyz. Čas. Slovensk. Akad. Vied., 14:3 (1964), 208–216 | MR | Zbl
[2] Dubuc L., “Sur les automates circulaires et la conjecture de Černý”, RAIRO Inform. Theor. Appl., 32:1–3 (1998), 21–34 | MR
[3] Eppstein D., “Reset sequences for monotonic automata”, SIAM J. Comput., 19:3 (1990), 500–510 | DOI | MR | Zbl
[4] Kari J., “Synchronizing finite automata on Eulerian digraphs”, Theoret. Comput. Sci., 295:1–3 (2003), 223–232 | DOI | MR | Zbl
[5] Pin J.-E., “On two combinatorial problems arising from automata theory”, Ann. Discrete Math., 17 (1983), 535–548 | MR | Zbl
[6] Ito M., Shikishima-Tsuji K., “Some results on directable automata”, Lect. Notes Comp. Sci., 3113, 2004, 125–133 | MR | Zbl
[7] Ito M., Algebraic theory of automata and languages, World Scientific, Singapore, 2004, 200 pp. | MR