A lower bound for the length of the shortest carefully synchronizing words
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2010), pp. 59-68

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a notion of careful synchronization for partial finite automata as a natural generalization of the synchronization notion for complete finite automata. We obtain a lower bound for the careful synchronization threshold for automata with a given number of states.
Keywords: finite automaton, partial finite automaton, synchronizability.
@article{IVM_2010_1_a5,
     author = {P. V. Martyugin},
     title = {A lower bound for the length of the shortest carefully synchronizing words},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--68},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_1_a5/}
}
TY  - JOUR
AU  - P. V. Martyugin
TI  - A lower bound for the length of the shortest carefully synchronizing words
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 59
EP  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_1_a5/
LA  - ru
ID  - IVM_2010_1_a5
ER  - 
%0 Journal Article
%A P. V. Martyugin
%T A lower bound for the length of the shortest carefully synchronizing words
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 59-68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_1_a5/
%G ru
%F IVM_2010_1_a5
P. V. Martyugin. A lower bound for the length of the shortest carefully synchronizing words. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2010), pp. 59-68. http://geodesic.mathdoc.fr/item/IVM_2010_1_a5/