Weinbaum factorizations of primitive words
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2010), pp. 21-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Weinbaum [1] showed the following. Let $w$ be a primitive word and $a$ be letter in $w$. Then a conjugate of $w$ can be written as $uv$ such that $a$ is a prefix and $a$ suffix of $u$, but $v$ neither starts nor ends with $a$, and $u$ and $v$ have a unique position in $w$ as cyclic factors. The latter condition means that there is exactly one conjugate of $w$ having $u$ as a prefix and there is exactly one conjugate of $w$ having $v$ as a prefix. It is this condition which makes the result non-trivial. We give a simplified proof for Weinbaum's result. Guided by this proof we exhibit quite different, but still simple, proofs for more general statements. For this purpose we introduce the notion of Weinbaum factor and Weinbaum factorization.
Keywords: primitive word, conjugate words, cyclic factor.
@article{IVM_2010_1_a3,
     author = {V. Diekert and T. Harju and D. Nowotka},
     title = {Weinbaum factorizations of primitive words},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {21--33},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_1_a3/}
}
TY  - JOUR
AU  - V. Diekert
AU  - T. Harju
AU  - D. Nowotka
TI  - Weinbaum factorizations of primitive words
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 21
EP  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_1_a3/
LA  - ru
ID  - IVM_2010_1_a3
ER  - 
%0 Journal Article
%A V. Diekert
%A T. Harju
%A D. Nowotka
%T Weinbaum factorizations of primitive words
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 21-33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_1_a3/
%G ru
%F IVM_2010_1_a3
V. Diekert; T. Harju; D. Nowotka. Weinbaum factorizations of primitive words. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2010), pp. 21-33. http://geodesic.mathdoc.fr/item/IVM_2010_1_a3/

[1] Weinbaum C. M., “Unique subwords in nonperiodic words”, Proc. Amer. Math. Soc., 109:3 (1990), 615–619 | DOI | MR | Zbl

[2] Harrison M. A., Introduction to formal language theory, Addison-Wesley Publishing Co., Boston, 1978, 594 pp. | MR | Zbl

[3] Lotharie M., Combinations on Words, Encyclopedia of Mathematics, 17, Addison-Wesley Publishing Co., Boston, 1983, 238 pp.

[4] Wen Zh. X., Wen Zh. Y., “Some properties of the singular words of the Fibonacci word”, Europ. J. Combin., 15:6 (1994), 587–598 | DOI | MR | Zbl

[5] Li M., Vitányi P., An introducion to Kolmogorov complexity and its applications, Springer-Verlag, New York, 1993, 637 pp. | MR | Zbl

[6] Harju T., Halava V., Ilie L., “Periods and binary words”, J. Combin. Theory. Ser. A, 89 (2000), 298–303 | DOI | MR | Zbl