A vector space approach to the road coloring problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2010), pp. 14-20

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a strongly connected, aperiodic, two-out digraph with adjacency matrix $A$. Suppose $A=R+B$ are coloring matrices: that is, matrices that represent the functions induced by an edge-coloring of $G$. We introduce a matrix $\Delta=\frac12(R-B)$ and investigate its properties. A number of useful conditions involving $\Delta$ which either are equivalent to or imply a solution to the road coloring problem are derived.
Keywords: digraph, synchronizing automaton, road coloring.
@article{IVM_2010_1_a2,
     author = {G. Budzban and Ph. Feinsilver},
     title = {A vector space approach to the road coloring problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--20},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_1_a2/}
}
TY  - JOUR
AU  - G. Budzban
AU  - Ph. Feinsilver
TI  - A vector space approach to the road coloring problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 14
EP  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_1_a2/
LA  - ru
ID  - IVM_2010_1_a2
ER  - 
%0 Journal Article
%A G. Budzban
%A Ph. Feinsilver
%T A vector space approach to the road coloring problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 14-20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_1_a2/
%G ru
%F IVM_2010_1_a2
G. Budzban; Ph. Feinsilver. A vector space approach to the road coloring problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2010), pp. 14-20. http://geodesic.mathdoc.fr/item/IVM_2010_1_a2/