A vector space approach to the road coloring problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2010), pp. 14-20
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a strongly connected, aperiodic, two-out digraph with adjacency matrix $A$. Suppose $A=R+B$ are coloring matrices: that is, matrices that represent the functions induced by an edge-coloring of $G$. We introduce a matrix $\Delta=\frac12(R-B)$ and investigate its properties. A number of useful conditions involving $\Delta$ which either are equivalent to or imply a solution to the road coloring problem are derived.
Keywords:
digraph, synchronizing automaton, road coloring.
@article{IVM_2010_1_a2,
author = {G. Budzban and Ph. Feinsilver},
title = {A vector space approach to the road coloring problem},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {14--20},
publisher = {mathdoc},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_1_a2/}
}
G. Budzban; Ph. Feinsilver. A vector space approach to the road coloring problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2010), pp. 14-20. http://geodesic.mathdoc.fr/item/IVM_2010_1_a2/