Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_1_a1, author = {D. S. Ananichev}, title = {The annulation threshold for partially monotonic automata}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--13}, publisher = {mathdoc}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_1_a1/} }
D. S. Ananichev. The annulation threshold for partially monotonic automata. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2010), pp. 3-13. http://geodesic.mathdoc.fr/item/IVM_2010_1_a1/
[1] Černý J., “Poznámka k homogénnym eksperimentom s konečnými automatami”, Mat.-Fyz. Čas. Slovensk. Akad. Vied., 14:3 (1964), 208–215 | MR
[2] Rystsov I., “Reset words for commutative and solvable automata”, Theoret. Comput. Sci., 172:1–2 (1997), 273–279 | DOI | MR | Zbl
[3] Schützenberger M. P., “On finite monoids having only trivial subgroups”, Inf. Control., 8 (1965), 190–194 | DOI | MR | Zbl
[4] Ananichev D. S., Volkov M. V., “Synchronizing generalized monotonic automata”, Theoret. Comput. Sci., 330:1 (2005), 3–13 | DOI | MR | Zbl
[5] Trahtman A. N., “The Černý conjecture for aperiodic automata”, Discrete Math. Theoret. Comput. Sci., 9:2 (2007), 3–10 | MR | Zbl
[6] Volkov M. V., “Synchronizing automata preserving a chain of partial orders”, Lect. Notes Comput. Sci., 4783, 2007, 27–37 | Zbl
[7] Eppstein D., “Reset sequences for monotonic automata”, SIAM J. Comput., 19:3 (1990), 500–510 | DOI | MR | Zbl
[8] Ananichev D. S., Volkov M. V., “Synchronizing monotonic automata”, Theoret. Comput. Sci., 327:3 (2005), 225–239 | DOI | MR