Decomposability of low 2-computably enumerable degrees and Turing jumps in the Ershov hierarchy
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2010), pp. 58-66

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the following theorem: For every notation of constructive ordinal, there exists a low 2-computably enumerable degree which is not splittable into two lower 2-computably enumerable degrees, whose jumps belong to the $\Delta$-level of the Ersov hierarchy that corresponds to this notation.
Keywords: low degrees, 2-computably enumerable degrees, Ershov hierarchy, Turing jumps, constructive ordinals.
@article{IVM_2010_12_a5,
     author = {M. Kh. Faizrakhmanov},
     title = {Decomposability of low 2-computably enumerable degrees and {Turing} jumps in the {Ershov} hierarchy},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {58--66},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_12_a5/}
}
TY  - JOUR
AU  - M. Kh. Faizrakhmanov
TI  - Decomposability of low 2-computably enumerable degrees and Turing jumps in the Ershov hierarchy
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 58
EP  - 66
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_12_a5/
LA  - ru
ID  - IVM_2010_12_a5
ER  - 
%0 Journal Article
%A M. Kh. Faizrakhmanov
%T Decomposability of low 2-computably enumerable degrees and Turing jumps in the Ershov hierarchy
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 58-66
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_12_a5/
%G ru
%F IVM_2010_12_a5
M. Kh. Faizrakhmanov. Decomposability of low 2-computably enumerable degrees and Turing jumps in the Ershov hierarchy. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2010), pp. 58-66. http://geodesic.mathdoc.fr/item/IVM_2010_12_a5/