Comparison of numerical integration formulas
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2010), pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the mean-square error of numerical integration, when the integrand is a random stationary process. We obtain exact asymptotic errors of classical quadrature formulas and give lower and upper bounds for the least mean-square error.
Mots-clés : quadrature formula
Keywords: stationary random process.
@article{IVM_2010_12_a0,
     author = {N. K. Bakirov and I. R. Gallyamov},
     title = {Comparison of numerical integration formulas},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--19},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_12_a0/}
}
TY  - JOUR
AU  - N. K. Bakirov
AU  - I. R. Gallyamov
TI  - Comparison of numerical integration formulas
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 3
EP  - 19
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_12_a0/
LA  - ru
ID  - IVM_2010_12_a0
ER  - 
%0 Journal Article
%A N. K. Bakirov
%A I. R. Gallyamov
%T Comparison of numerical integration formulas
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 3-19
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_12_a0/
%G ru
%F IVM_2010_12_a0
N. K. Bakirov; I. R. Gallyamov. Comparison of numerical integration formulas. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2010), pp. 3-19. http://geodesic.mathdoc.fr/item/IVM_2010_12_a0/

[1] Suldin A. V., “Mera Vinera i ee prilozheniya k priblizhennym metodam, I”, Izv. vuzov. Matematika, 1959, no. 6, 145–158 | MR | Zbl

[2] Suldin A. V., “Mera Vinera i ee prilozheniya k priblizhennym metodam, II”, Izv. vuzov. Matematika, 1960, no. 5, 165–179 | MR | Zbl

[3] Sacks J., Ylvisaker D., “Statistical design and integral approximation”, Proc. 12th Biennial Sem. Canad. Math. Congress, Montreal, 1970, 115–136 | MR | Zbl

[4] Ritter K., Average-case analysis of numerical problems, Lecture Notes in Math., 1733, Springer, Berlin–Heidelberg–New York–Barcelona–Hong Kong–London–Milan–Pads–Singapore–Tokyo, 2000 | MR | Zbl

[5] Ritter K., Wasilkowski G. W., Wozniakowski H., “On multivariate integration for stochastic processes”, Numerical integration, IV, Internat. Ser. Numer. Math., 112, Birkhäuser, Basel, 1993, 331–347 | MR | Zbl

[6] Wahba G., “On the regression design problem of Sacks and Ylvisaker”, Ann. Math. Statist., 42:3 (1971), 1035–1043 | DOI | MR

[7] Wahba G., “Regression design for some equivalence classes of kernels”, Ann. Statist., 2:5 (1974), 925–934 | DOI | MR | Zbl

[8] Voitishek A. V., Kablukova E. G., Bulgakova T. E., “Ispolzovanie spektralnykh modelei sluchainykh polei pri issledovanii algoritmov chislennogo integrirovaniya”, Vychis. tekhnologii, 9, spetsialnyi vypusk (2004), 50–61

[9] Kramer G., Lidbetter M., Statsionarnye sluchainye protsessy, Mir, M., 1969

[10] Belyaev Yu. K., “Lokalnye svoistva vyborochnykh funktsii statsionarnykh gaussovskikh protsessov”, Teor. veroyatn. i ee primen., 5:1 (1960), 128–131 | Zbl

[11] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2003

[12] Vasilev N. I., Klokov Yu. A., Osnovy teorii kraevykh zadach obyknovennykh differentsialnykh uravnenii, Zinatne, Riga, 1978 | MR

[13] Rozanov Yu. A., Statsionarnye sluchainye protsessy, Fizmatgiz, M., 1963 | MR

[14] Lokutsievskii O. V., Gavrikov M. B., Nachala chislennogo analiza, TOO Yanus, M., 1995 | MR