Smooth almost $\Delta$-fiber bundles over simplicial complexes
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2010), pp. 3-21
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we construct and study a category of principal fiber bundles with the following properties: 1) the base is a simplicial complex and the structure group is a $k$-dimensional torus, 2) maps of any atlas are smooth on every simplex of the base, and 3) the finite group $\Delta$ acts on the base and this action has a multi-valued lifting to the total space. We study invariant connections and built integer-valued realizable characteristic classes.
Keywords:
simplicial complex, simplicial group action, Thom–Whitney forms, principal fiber bundle, multi-valued action, almost $\Delta$-bundles.
Mots-clés : invariant connection
Mots-clés : invariant connection
@article{IVM_2010_11_a0,
author = {V. Y. Zinchenko and E. I. Yakovlev},
title = {Smooth almost $\Delta$-fiber bundles over simplicial complexes},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--21},
publisher = {mathdoc},
number = {11},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_11_a0/}
}
TY - JOUR AU - V. Y. Zinchenko AU - E. I. Yakovlev TI - Smooth almost $\Delta$-fiber bundles over simplicial complexes JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 3 EP - 21 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_11_a0/ LA - ru ID - IVM_2010_11_a0 ER -
V. Y. Zinchenko; E. I. Yakovlev. Smooth almost $\Delta$-fiber bundles over simplicial complexes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2010), pp. 3-21. http://geodesic.mathdoc.fr/item/IVM_2010_11_a0/