Mots-clés : invariant connection
@article{IVM_2010_11_a0,
author = {V. Y. Zinchenko and E. I. Yakovlev},
title = {Smooth almost $\Delta$-fiber bundles over simplicial complexes},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--21},
year = {2010},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_11_a0/}
}
V. Y. Zinchenko; E. I. Yakovlev. Smooth almost $\Delta$-fiber bundles over simplicial complexes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2010), pp. 3-21. http://geodesic.mathdoc.fr/item/IVM_2010_11_a0/
[1] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | MR | Zbl
[2] Yakovlev E. I., “Rassloeniya i geometricheskie struktury, assotsiirovannye s giroskopicheskimi sistemami”, Sovremennaya matematika. Fundamentalnye napravleniya, 22, 2007, 100–126 | MR
[3] Ryzhkova A. B., Yakovlev E. I., “Rassloeniya s gruppami mnogoznachnykh avtomorfizmov”, Matem. zametki, 77:4 (2005), 600–616 | MR | Zbl
[4] Lemann D., “Gomotopicheskaya teoriya differentsialnykh form”, Matematika. Novoe v zarubezhnoi nauke, Mir, M., 1981, 7–85 | MR
[5] Uitnei Kh., Geometricheskaya teoriya integrirovaniya, In. lit., M., 1969
[6] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR
[7] Suon R. Dzh., “Teoriya Toma differentsialnykh form na simplitsialnykh mnozhestvakh”, Matematika. Novoe v zarubezhnoi nauke, Mir, M., 1981, 172–176
[8] Mankrs Dzh., “Elementarnaya differentsialnaya topologiya”, Dopolnenie v kn.: Milnor Dzh., Stashef Dzh., Kharakteristicheskie klassy, Mir, M., 1979 | MR
[9] Postnikov M. M., Vvedenie v teoriyu Morsa, Nauka, M., 1971 | MR
[10] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR | Zbl
[11] Ryzhkova A. B., Yakovlev E. I., “Glavnye rassloeniya, dopuskayuschie pochti invariantnye struktury”, Izv. vuzov. Matematika, 2007, no. 8, 48–59 | MR | Zbl
[12] Moerdijk I., Pronk D. A., “Simplicial cohomology of orbifolds”, Indag. Math. New Ser., 10:2 (1999), 269–293 | DOI | MR | Zbl