The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to~$C_{2\pi}$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2010), pp. 60-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we perform a comparative analysis of Lebesgue functions and constants of a family of Lagrange polynomials. We prove that if a polynomial from the family has the minimal norm in the space of square summable functions, then it also has the minimal norm as an operator which maps a space of continuous functions into itself.
Mots-clés : Lagrange polynomials, Lebesgue functions, Lebesgue constants.
Keywords: fundamental polynomials
@article{IVM_2010_10_a5,
     author = {I. A. Shakirov},
     title = {The {Lagrange} trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to~$C_{2\pi}$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--68},
     publisher = {mathdoc},
     number = {10},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_10_a5/}
}
TY  - JOUR
AU  - I. A. Shakirov
TI  - The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to~$C_{2\pi}$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 60
EP  - 68
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_10_a5/
LA  - ru
ID  - IVM_2010_10_a5
ER  - 
%0 Journal Article
%A I. A. Shakirov
%T The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to~$C_{2\pi}$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 60-68
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_10_a5/
%G ru
%F IVM_2010_10_a5
I. A. Shakirov. The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to~$C_{2\pi}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2010), pp. 60-68. http://geodesic.mathdoc.fr/item/IVM_2010_10_a5/

[1] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965 | MR

[2] Shakirov I. A., “Kvadraturnye formuly dlya singulyarnogo integrala so sdvigom i ikh prilozheniya”, Differents. uravneniya, 27:4 (1991), 682–691 | MR | Zbl

[3] Dzyadyk V. K., Approksimatsionnye metody resheniya differentsialnykh i integralnykh uravnenii, Nauk. dumka, Kiev, 1988 | MR | Zbl