Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_10_a5, author = {I. A. Shakirov}, title = {The {Lagrange} trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to~$C_{2\pi}$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {60--68}, publisher = {mathdoc}, number = {10}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_10_a5/} }
TY - JOUR AU - I. A. Shakirov TI - The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to~$C_{2\pi}$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 60 EP - 68 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_10_a5/ LA - ru ID - IVM_2010_10_a5 ER -
%0 Journal Article %A I. A. Shakirov %T The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to~$C_{2\pi}$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2010 %P 60-68 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2010_10_a5/ %G ru %F IVM_2010_10_a5
I. A. Shakirov. The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to~$C_{2\pi}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2010), pp. 60-68. http://geodesic.mathdoc.fr/item/IVM_2010_10_a5/
[1] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965 | MR
[2] Shakirov I. A., “Kvadraturnye formuly dlya singulyarnogo integrala so sdvigom i ikh prilozheniya”, Differents. uravneniya, 27:4 (1991), 682–691 | MR | Zbl
[3] Dzyadyk V. K., Approksimatsionnye metody resheniya differentsialnykh i integralnykh uravnenii, Nauk. dumka, Kiev, 1988 | MR | Zbl