The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to $C_{2\pi}$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2010), pp. 60-68
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we perform a comparative analysis of Lebesgue functions and constants of a family of Lagrange polynomials. We prove that if a polynomial from the family has the minimal norm in the space of square summable functions, then it also has the minimal norm as an operator which maps a space of continuous functions into itself.
Mots-clés :
Lagrange polynomials, Lebesgue functions, Lebesgue constants.
Keywords: fundamental polynomials
Keywords: fundamental polynomials
@article{IVM_2010_10_a5,
author = {I. A. Shakirov},
title = {The {Lagrange} trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to~$C_{2\pi}$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {60--68},
year = {2010},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_10_a5/}
}
TY - JOUR
AU - I. A. Shakirov
TI - The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to $C_{2\pi}$
JO - Izvestiâ vysših učebnyh zavedenij. Matematika
PY - 2010
SP - 60
EP - 68
IS - 10
UR - http://geodesic.mathdoc.fr/item/IVM_2010_10_a5/
LA - ru
ID - IVM_2010_10_a5
ER -
%0 Journal Article
%A I. A. Shakirov
%T The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to $C_{2\pi}$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 60-68
%N 10
%U http://geodesic.mathdoc.fr/item/IVM_2010_10_a5/
%G ru
%F IVM_2010_10_a5
I. A. Shakirov. The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to $C_{2\pi}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2010), pp. 60-68. http://geodesic.mathdoc.fr/item/IVM_2010_10_a5/
[1] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965 | MR
[2] Shakirov I. A., “Kvadraturnye formuly dlya singulyarnogo integrala so sdvigom i ikh prilozheniya”, Differents. uravneniya, 27:4 (1991), 682–691 | MR | Zbl
[3] Dzyadyk V. K., Approksimatsionnye metody resheniya differentsialnykh i integralnykh uravnenii, Nauk. dumka, Kiev, 1988 | MR | Zbl