The limit cycles of a~second-order system of differential equations: the method of small forms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2009), pp. 73-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the existence of limit cycles of a system of the second-order differential equations with a vector parameter. We propose a method for representing a solution as a sum of forms with respect to the initial value and the parameter; we call this technique the method of small forms. We establish the conditions under which a sufficiently small neighborhood of the equilibrium point contains no limit cycles. We construct a polynomial, whose positive roots of an odd multiplicity define the lower bound for the number of cycles, and prime positive roots (other positive roots do not exist) define the number of limit cycles in a sufficiently small neighborhood of the equilibrium point. We prove theorems, whose conditions guarantee that a positive root of an odd multiplicity defines a unique limit cycle, but a positive root of an even multiplicity defines exactly two limit cycles. We propose a method for defining the type of the stability of limit cycles.
Keywords: stable (unstable) limit cycle, prime roots, roots of even and odd multiplicity, contraction operator, fixed point.
Mots-clés : polynomial
@article{IVM_2009_8_a9,
     author = {M. T. Teryokhin},
     title = {The limit cycles of a~second-order system of differential equations: the method of small forms},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--82},
     publisher = {mathdoc},
     number = {8},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_8_a9/}
}
TY  - JOUR
AU  - M. T. Teryokhin
TI  - The limit cycles of a~second-order system of differential equations: the method of small forms
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 73
EP  - 82
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_8_a9/
LA  - ru
ID  - IVM_2009_8_a9
ER  - 
%0 Journal Article
%A M. T. Teryokhin
%T The limit cycles of a~second-order system of differential equations: the method of small forms
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 73-82
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_8_a9/
%G ru
%F IVM_2009_8_a9
M. T. Teryokhin. The limit cycles of a~second-order system of differential equations: the method of small forms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2009), pp. 73-82. http://geodesic.mathdoc.fr/item/IVM_2009_8_a9/

[1] Amelkin V. V., “O suschestvovanii predelnykh tsiklov u dvumernykh avtonomnykh sistem differentsialnykh uravnenii”, Differents. uravneniya, 24:12 (1988), 2027–2032 | MR

[2] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, M., 1967, 487 pp. | MR | Zbl

[3] Andronov A. A., Leontovich E. A., “Rozhdenie predelnykh tsiklov iz negrubogo fokusa ili tsentra i ot negrubogo predelnogo tsikla”, Matem. sb., 40(82):2 (1956), 179–224 | MR | Zbl

[4] Bautin N. N., “O chisle predelnykh tsiklov, poyavlyayuschikhsya pri izmenenii parametra iz sostoyaniya ravnovesiya tipa fokusa ili tsentra”, Matem. sb., 30(72):1 (1952), 181–196 | MR | Zbl

[5] Dolov M. V., Kuzmin R. V., “O predelnykh tsiklakh odnogo klassa sistem”, Differents. uravneniya, 29:9 (1993), 1481–1485 | MR | Zbl

[6] Dyulak G., O predelnykh tsiklakh, Nauka, M., 1980, 156 pp. | MR

[7] Malyshev Yu. V., Zakharov V. P., “Issledovanie suschestvovaniya i vypuklosti predelnykh tsiklov metodom obobschennykh funktsii Lyapunova”, Differents. uravneniya, 25:2 (1989), 212–216 | MR | Zbl

[8] Otrokov N. F., “O chisle predelnykh tsiklov differentsialnogo uravneniya v okrestnosti osoboi tochki”, Matem. sb., 34(76):1 (1954), 127–144 | MR | Zbl

[9] Rychkov G. S., “Polnoe issledovanie chisla predelnykh tsiklov uravneniya $(b_{10}x+y)\,dy=\sum_{i+j\le2}a_{ij}x^iy^j\,dx$”, Differents. uravneniya, 6:12 (1970), 1193–1199

[10] Rychkov G. S., “Kriterii suschestvovaniya u uravneniya Abelya vtorogo roda neskolkikh predelnykh tsiklov”, Differents. uravneniya, 39:8 (2003), 1058–1061 | MR | Zbl

[11] Sadovskii A. P., “Ob usloviyakh tsentra i predelnykh tsiklov odnoi kubicheskoi sistemy differentsialnykh uravnenii”, Differents. uravneniya, 36:1 (2000), 98–102 | MR | Zbl

[12] Sadovskii A. P., “Kubicheskie sistemy nelineinykh kolebanii s semyu predelnymi tsiklami”, Differents. uravneniya, 39:4 (2003), 472–481 | MR | Zbl

[13] Cherkas L. A., “Tochnaya otsenka chisla predelnykh tsiklov avtonomnoi sistemy na ploskosti”, Differents. uravneniya, 39:6 (2003), 759–768 | MR | Zbl

[14] Cherkas L. A., “Otsenka chisla predelnykh tsiklov s pomoschyu kriticheskikh tochek uslovnogo ekstremuma”, Differents. uravneniya, 39:10 (2003), 1334–1342 | MR | Zbl

[15] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR

[16] Stepanov V. V., Kurs differentsialnykh uravnenii, Gostekhizdat, M., 1953, 468 pp.