Varieties of rings, where all subdirectly irreducible finite rings are Armendariz ones
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2009), pp. 45-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study varieties of rings in which any subdirectly irreducible finite ring is Armendariz. We also describe the locally finite varieties of Armendariz rings.
Keywords: Armendariz ring, variety of rings, locally finite variety of rings, polynomial identity.
@article{IVM_2009_8_a5,
     author = {A. S. Kuz'mina},
     title = {Varieties of rings, where all subdirectly irreducible finite rings are {Armendariz} ones},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--52},
     publisher = {mathdoc},
     number = {8},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_8_a5/}
}
TY  - JOUR
AU  - A. S. Kuz'mina
TI  - Varieties of rings, where all subdirectly irreducible finite rings are Armendariz ones
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 45
EP  - 52
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_8_a5/
LA  - ru
ID  - IVM_2009_8_a5
ER  - 
%0 Journal Article
%A A. S. Kuz'mina
%T Varieties of rings, where all subdirectly irreducible finite rings are Armendariz ones
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 45-52
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_8_a5/
%G ru
%F IVM_2009_8_a5
A. S. Kuz'mina. Varieties of rings, where all subdirectly irreducible finite rings are Armendariz ones. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2009), pp. 45-52. http://geodesic.mathdoc.fr/item/IVM_2009_8_a5/

[1] Armendariz E. P., “A note on extensions of Baer and p.p.-rings”, J. Austral. Math. Soc., 18 (1974), 470–473 | DOI | MR | Zbl

[2] Rege M. B., Chhawchharia S., “Armendariz rings”, Proc. Japan Acad. Ser. A Math. Sci., 73 (1997), 14–17 | DOI | MR | Zbl

[3] Anderson D. D., Camillo V., “Armendariz rings and Gaussian rings”, J. Algebra, 217 (1999), 434–447 | DOI | MR | Zbl

[4] Kim N. K., Lee Y., “Armendariz rings and reduced rings”, J. Algebra, 223 (2000), 477–488 | DOI | MR | Zbl

[5] Lee T.-K., Wong T.-L., “On Armendariz rings”, Houston J. Math., 29:3 (2003), 583–593 | MR | Zbl

[6] Huh C., Lee Y., Smoctunowicz A., “Armendariz rings and semicommutative rings”, Comm. Algebra, 30:2 (2002), 751–761 | DOI | MR | Zbl

[7] Lee T.-K., Zhou Y., “Armendariz and reduced rings”, Comm. Algebra, 32:6 (2004), 2287–2299 | DOI | MR | Zbl

[8] Liu Z., Zhao R., “On weak Armendariz rings”, Comm. Algebra, 34 (2006), 2607–2616 | DOI | MR | Zbl

[9] Kuzmina A. S., “O mnogoobraziyakh algebr, podpryamo nerazlozhimye algebry kotorykh yavlyayutsya armenderizovskimi”, Izv. Altaisk. gos. un-ta, 2007, no. 1, 10–14

[10] Dzhekobson N., Stroenie kolets, Gos. izd-vo inostr. lit., M., 1961, 392 pp. | MR