Varieties of rings, where all subdirectly irreducible finite rings are Armendariz ones
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2009), pp. 45-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study varieties of rings in which any subdirectly irreducible finite ring is Armendariz. We also describe the locally finite varieties of Armendariz rings.
Keywords: Armendariz ring, variety of rings, locally finite variety of rings, polynomial identity.
@article{IVM_2009_8_a5,
     author = {A. S. Kuz'mina},
     title = {Varieties of rings, where all subdirectly irreducible finite rings are {Armendariz} ones},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--52},
     year = {2009},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_8_a5/}
}
TY  - JOUR
AU  - A. S. Kuz'mina
TI  - Varieties of rings, where all subdirectly irreducible finite rings are Armendariz ones
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 45
EP  - 52
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_8_a5/
LA  - ru
ID  - IVM_2009_8_a5
ER  - 
%0 Journal Article
%A A. S. Kuz'mina
%T Varieties of rings, where all subdirectly irreducible finite rings are Armendariz ones
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 45-52
%N 8
%U http://geodesic.mathdoc.fr/item/IVM_2009_8_a5/
%G ru
%F IVM_2009_8_a5
A. S. Kuz'mina. Varieties of rings, where all subdirectly irreducible finite rings are Armendariz ones. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2009), pp. 45-52. http://geodesic.mathdoc.fr/item/IVM_2009_8_a5/

[1] Armendariz E. P., “A note on extensions of Baer and p.p.-rings”, J. Austral. Math. Soc., 18 (1974), 470–473 | DOI | MR | Zbl

[2] Rege M. B., Chhawchharia S., “Armendariz rings”, Proc. Japan Acad. Ser. A Math. Sci., 73 (1997), 14–17 | DOI | MR | Zbl

[3] Anderson D. D., Camillo V., “Armendariz rings and Gaussian rings”, J. Algebra, 217 (1999), 434–447 | DOI | MR | Zbl

[4] Kim N. K., Lee Y., “Armendariz rings and reduced rings”, J. Algebra, 223 (2000), 477–488 | DOI | MR | Zbl

[5] Lee T.-K., Wong T.-L., “On Armendariz rings”, Houston J. Math., 29:3 (2003), 583–593 | MR | Zbl

[6] Huh C., Lee Y., Smoctunowicz A., “Armendariz rings and semicommutative rings”, Comm. Algebra, 30:2 (2002), 751–761 | DOI | MR | Zbl

[7] Lee T.-K., Zhou Y., “Armendariz and reduced rings”, Comm. Algebra, 32:6 (2004), 2287–2299 | DOI | MR | Zbl

[8] Liu Z., Zhao R., “On weak Armendariz rings”, Comm. Algebra, 34 (2006), 2607–2616 | DOI | MR | Zbl

[9] Kuzmina A. S., “O mnogoobraziyakh algebr, podpryamo nerazlozhimye algebry kotorykh yavlyayutsya armenderizovskimi”, Izv. Altaisk. gos. un-ta, 2007, no. 1, 10–14

[10] Dzhekobson N., Stroenie kolets, Gos. izd-vo inostr. lit., M., 1961, 392 pp. | MR