The Cauchy problem in Sobolev spaces for Dirac operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 51-64
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the Cauchy problem as a typical example of ill-posed boundary value problems. We describe the necessary and sufficient solvability conditions for the Cauchy problem for a Dirac operator $A$ in Sobolev spaces in a bounded domain $D\subset\mathbb R^n$ with piecewise smooth boundary. Namely, we reduce the Cauchy problem for the Dirac operator to the problem of the harmonic extension from a smaller domain to a larger one.
Moreover, along with the solvability conditions for the problem, using bases with double orthogonality, we construct a Carleman formula for recovering a function $u$ from the Sobolev space $H^s(D)$, $s\in\mathbb N$, by its values on $\Gamma$ and values $Au$ in $D$, where $\Gamma$ is an open connected subset of the boundary $\partial D$.
It is worth pointing out that we impose no assumptions about geometric properties of the domain $D$, except for its connectedness.
Keywords:
Cauchy problem, Dirac operators
Mots-clés : Carleman formula.
Mots-clés : Carleman formula.
@article{IVM_2009_7_a4,
author = {I. V. Shestakov},
title = {The {Cauchy} problem in {Sobolev} spaces for {Dirac} operators},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {51--64},
publisher = {mathdoc},
number = {7},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_7_a4/}
}
I. V. Shestakov. The Cauchy problem in Sobolev spaces for Dirac operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 51-64. http://geodesic.mathdoc.fr/item/IVM_2009_7_a4/