Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2009_7_a1, author = {V. A. Kyrov}, title = {Phenomenologically symmetrical local {Lie} groups of transformations of the space~$R^s$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {10--21}, publisher = {mathdoc}, number = {7}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2009_7_a1/} }
V. A. Kyrov. Phenomenologically symmetrical local Lie groups of transformations of the space~$R^s$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 10-21. http://geodesic.mathdoc.fr/item/IVM_2009_7_a1/
[1] Mikhailichenko G. G., Gruppovaya simmetriya fizicheskikh struktur, Barnaul–Gorno-Altaisk, 2003, 204 pp.
[2] Simonov A. A., “Obobschennoe matrichnoe umnozhenie kak ekvivalentnoe predstavlenie teorii fizicheskikh struktur”, Prilozh. k knige Kulakova Yu. I., Teoriya fizicheskikh struktur, OOO “Kompaniya Yunivers Kontrakt”, M., 2004, 675–707
[3] Mikhailichenko G. G., “Fenomenologicheskaya i gruppovaya simmetriya v geometrii dvukh mnozhestv (teorii fizicheskikh struktur)”, DAN SSSR, 28:1 (1985), 39–41 | MR
[4] Akivis M. A., Shelekhov A. M., Vvedenie v teoriyu tri-tkanei, KGU, Kalinin, 1985, 84 pp.
[5] Mikhailichenko G. G., “Dvumetricheskie fizicheskie struktury ranga $(n+1,2)$”, Sib. matem. zhurn., 34:3 (1993), 132–143 | MR | Zbl
[6] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967, 224 pp. | MR | Zbl
[7] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1973, 527 pp. | MR | Zbl
[8] Chatterjea S. K., “On Ward quasigroups”, Pure Math. Manuscript., 6 (1987), 31–34 | MR | Zbl
[9] Mikhailichenko G. G., Polimetricheskie geometrii, NGU, Novosibirsk, 2001, 146 pp.
[10] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 399 pp. | MR | Zbl