Mappings connected with the gradient of conformal radius
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2009), pp. 60-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the following conformality criterion for the gradient of conformal radius $\nabla R(D,z)$ of a convex domain $D$: the boundary $\partial D$ has to be a circumference. We calculate coefficients $K(r)$ for $K(r)$-quasiconformal mappings $\nabla R(D(r),z)$, $D(r)\subset D$, $0$, and complete the results obtained by F. G. Avkhadiev and K.-J. Wirths for the structure of boundary elements of quasiconformal mappings of a domain $D$.
Keywords: conformal radius, $K$-quasiconformal mapping, Beltrami equation.
Mots-clés : gradient of conformal radius
@article{IVM_2009_6_a7,
     author = {L. A. Aksent'ev and A. N. Akhmetova},
     title = {Mappings connected with the gradient of conformal radius},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--64},
     publisher = {mathdoc},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_6_a7/}
}
TY  - JOUR
AU  - L. A. Aksent'ev
AU  - A. N. Akhmetova
TI  - Mappings connected with the gradient of conformal radius
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 60
EP  - 64
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_6_a7/
LA  - ru
ID  - IVM_2009_6_a7
ER  - 
%0 Journal Article
%A L. A. Aksent'ev
%A A. N. Akhmetova
%T Mappings connected with the gradient of conformal radius
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 60-64
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_6_a7/
%G ru
%F IVM_2009_6_a7
L. A. Aksent'ev; A. N. Akhmetova. Mappings connected with the gradient of conformal radius. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2009), pp. 60-64. http://geodesic.mathdoc.fr/item/IVM_2009_6_a7/

[1] Avkhadiev F. G., Konformno invariantnye neravenstva i ikh prilozheniya, Preprint No 95-1, Izd-vo Kazansk. fonda “Matem.”, Kazan, 1995, 26 pp.

[2] Avkhadiev F. G. , Wirths K.-J., “The conformal radius as a function and its gradient image”, Israel J. Mathematics, 145 (2005), 349–374 | DOI | MR | Zbl

[3] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR | Zbl

[4] Savelov A. A., Ploskie krivye, Fizmatgiz, M., 1960, 290 pp. | MR

[5] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969, 135 pp. | MR

[6] Aksentev L. A., “Lokalnoe stroenie poverkhnosti vnutrennego konformnogo radiusa dlya ploskoi oblasti”, Izv. vuzov. Matematika, 2002, no. 4, 3–12 | MR | Zbl