Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2009_6_a7, author = {L. A. Aksent'ev and A. N. Akhmetova}, title = {Mappings connected with the gradient of conformal radius}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {60--64}, publisher = {mathdoc}, number = {6}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2009_6_a7/} }
L. A. Aksent'ev; A. N. Akhmetova. Mappings connected with the gradient of conformal radius. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2009), pp. 60-64. http://geodesic.mathdoc.fr/item/IVM_2009_6_a7/
[1] Avkhadiev F. G., Konformno invariantnye neravenstva i ikh prilozheniya, Preprint No 95-1, Izd-vo Kazansk. fonda “Matem.”, Kazan, 1995, 26 pp.
[2] Avkhadiev F. G. , Wirths K.-J., “The conformal radius as a function and its gradient image”, Israel J. Mathematics, 145 (2005), 349–374 | DOI | MR | Zbl
[3] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR | Zbl
[4] Savelov A. A., Ploskie krivye, Fizmatgiz, M., 1960, 290 pp. | MR
[5] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969, 135 pp. | MR
[6] Aksentev L. A., “Lokalnoe stroenie poverkhnosti vnutrennego konformnogo radiusa dlya ploskoi oblasti”, Izv. vuzov. Matematika, 2002, no. 4, 3–12 | MR | Zbl