Mappings connected with the gradient of conformal radius
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2009), pp. 60-64
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we prove the following conformality criterion for the gradient of conformal radius $\nabla R(D,z)$ of a convex domain $D$: the boundary $\partial D$ has to be a circumference. We calculate coefficients $K(r)$ for $K(r)$-quasiconformal mappings $\nabla R(D(r),z)$, $D(r)\subset D$, $0, and complete the results obtained by F. G. Avkhadiev and K.-J. Wirths for the structure of boundary elements of quasiconformal mappings of a domain $D$.
Keywords:
conformal radius, $K$-quasiconformal mapping, Beltrami equation.
Mots-clés : gradient of conformal radius
Mots-clés : gradient of conformal radius
@article{IVM_2009_6_a7,
author = {L. A. Aksent'ev and A. N. Akhmetova},
title = {Mappings connected with the gradient of conformal radius},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {60--64},
year = {2009},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_6_a7/}
}
L. A. Aksent'ev; A. N. Akhmetova. Mappings connected with the gradient of conformal radius. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2009), pp. 60-64. http://geodesic.mathdoc.fr/item/IVM_2009_6_a7/
[1] Avkhadiev F. G., Konformno invariantnye neravenstva i ikh prilozheniya, Preprint No 95-1, Izd-vo Kazansk. fonda “Matem.”, Kazan, 1995, 26 pp.
[2] Avkhadiev F. G. , Wirths K.-J., “The conformal radius as a function and its gradient image”, Israel J. Mathematics, 145 (2005), 349–374 | DOI | MR | Zbl
[3] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR | Zbl
[4] Savelov A. A., Ploskie krivye, Fizmatgiz, M., 1960, 290 pp. | MR
[5] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969, 135 pp. | MR
[6] Aksentev L. A., “Lokalnoe stroenie poverkhnosti vnutrennego konformnogo radiusa dlya ploskoi oblasti”, Izv. vuzov. Matematika, 2002, no. 4, 3–12 | MR | Zbl