Splitting of 2-computably enumerable degrees with avoiding cones
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2009), pp. 76-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we show that for any pair of properly 2-c. e. degrees $\mathbf0\mathbf d\mathbf a$ such that there are no c. e. degrees between $\mathbf d$ and $\mathbf a$, the degree $\mathbf a$ is splittable in the class of 2-c. e. degrees avoiding the upper cone of $\mathbf d$. We also study the possibility to characterize such an isolation in terms of splitting.
Keywords: 2-c. e. degrees, Turing degrees, splitting, splitting with avoiding cones, isolation.
@article{IVM_2009_6_a11,
     author = {M. M. Yamaleev},
     title = {Splitting of 2-computably enumerable degrees with avoiding cones},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--80},
     publisher = {mathdoc},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_6_a11/}
}
TY  - JOUR
AU  - M. M. Yamaleev
TI  - Splitting of 2-computably enumerable degrees with avoiding cones
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 76
EP  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_6_a11/
LA  - ru
ID  - IVM_2009_6_a11
ER  - 
%0 Journal Article
%A M. M. Yamaleev
%T Splitting of 2-computably enumerable degrees with avoiding cones
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 76-80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_6_a11/
%G ru
%F IVM_2009_6_a11
M. M. Yamaleev. Splitting of 2-computably enumerable degrees with avoiding cones. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2009), pp. 76-80. http://geodesic.mathdoc.fr/item/IVM_2009_6_a11/

[1] Sacks G. E., “On the degrees less than $\mathbf{0'}$”, Ann. Math., 77 (1963), 211–231 | DOI | MR | Zbl

[2] Cooper S. B., “A splitting theorem for the $n$-r.e. degrees”, Proc. Amer. Math. Soc., 115 (1992), 461–471 ; http:// www.maths.leeds.ac.uk/Pure/staff/cooper/preprints.html | DOI | MR | Zbl

[3] Arslanov M. M., Cooper S. B., Li A., “There is no low maximal $d$-c.e. degree – Corrigendum”, Math. Logic Quarterly, 50:6 (2004), 628–636 ; http://www.maths.leeds.ac.uk/Pure/staff/cooper/preprints.html | DOI | MR

[4] Arslanov M. M., Kalimullin I. Sh., Lempp S., “On Downey's conjecture”, J. Symbolic Logic (to appear)

[5] Cooper S. B., Li A., “Splitting and cone avoidance in the d.r.e. degrees”, Science in China Ser. A, 45 (2002), 1135–1146 ; http://www.maths.leeds.ac.uk/Pure/staff/cooper/preprints.html | MR | Zbl

[6] Cooper S. B., Lempp S., Watson Ph., “Weak density and cupping in the $d$-r.e. degrees”, Israel J. Math., 67 (1989), 137–152 ; http://www.math.wisc.edu/~lempp/papers/list.html | DOI | MR | Zbl