@article{IVM_2009_6_a11,
author = {M. M. Yamaleev},
title = {Splitting of 2-computably enumerable degrees with avoiding cones},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {76--80},
year = {2009},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_6_a11/}
}
M. M. Yamaleev. Splitting of 2-computably enumerable degrees with avoiding cones. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2009), pp. 76-80. http://geodesic.mathdoc.fr/item/IVM_2009_6_a11/
[1] Sacks G. E., “On the degrees less than $\mathbf{0'}$”, Ann. Math., 77 (1963), 211–231 | DOI | MR | Zbl
[2] Cooper S. B., “A splitting theorem for the $n$-r.e. degrees”, Proc. Amer. Math. Soc., 115 (1992), 461–471 ; http:// www.maths.leeds.ac.uk/Pure/staff/cooper/preprints.html | DOI | MR | Zbl
[3] Arslanov M. M., Cooper S. B., Li A., “There is no low maximal $d$-c.e. degree – Corrigendum”, Math. Logic Quarterly, 50:6 (2004), 628–636 ; http://www.maths.leeds.ac.uk/Pure/staff/cooper/preprints.html | DOI | MR
[4] Arslanov M. M., Kalimullin I. Sh., Lempp S., “On Downey's conjecture”, J. Symbolic Logic (to appear)
[5] Cooper S. B., Li A., “Splitting and cone avoidance in the d.r.e. degrees”, Science in China Ser. A, 45 (2002), 1135–1146 ; http://www.maths.leeds.ac.uk/Pure/staff/cooper/preprints.html | MR | Zbl
[6] Cooper S. B., Lempp S., Watson Ph., “Weak density and cupping in the $d$-r.e. degrees”, Israel J. Math., 67 (1989), 137–152 ; http://www.math.wisc.edu/~lempp/papers/list.html | DOI | MR | Zbl