Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2009_6_a11, author = {M. M. Yamaleev}, title = {Splitting of 2-computably enumerable degrees with avoiding cones}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {76--80}, publisher = {mathdoc}, number = {6}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2009_6_a11/} }
M. M. Yamaleev. Splitting of 2-computably enumerable degrees with avoiding cones. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2009), pp. 76-80. http://geodesic.mathdoc.fr/item/IVM_2009_6_a11/
[1] Sacks G. E., “On the degrees less than $\mathbf{0'}$”, Ann. Math., 77 (1963), 211–231 | DOI | MR | Zbl
[2] Cooper S. B., “A splitting theorem for the $n$-r.e. degrees”, Proc. Amer. Math. Soc., 115 (1992), 461–471 ; http:// www.maths.leeds.ac.uk/Pure/staff/cooper/preprints.html | DOI | MR | Zbl
[3] Arslanov M. M., Cooper S. B., Li A., “There is no low maximal $d$-c.e. degree – Corrigendum”, Math. Logic Quarterly, 50:6 (2004), 628–636 ; http://www.maths.leeds.ac.uk/Pure/staff/cooper/preprints.html | DOI | MR
[4] Arslanov M. M., Kalimullin I. Sh., Lempp S., “On Downey's conjecture”, J. Symbolic Logic (to appear)
[5] Cooper S. B., Li A., “Splitting and cone avoidance in the d.r.e. degrees”, Science in China Ser. A, 45 (2002), 1135–1146 ; http://www.maths.leeds.ac.uk/Pure/staff/cooper/preprints.html | MR | Zbl
[6] Cooper S. B., Lempp S., Watson Ph., “Weak density and cupping in the $d$-r.e. degrees”, Israel J. Math., 67 (1989), 137–152 ; http://www.math.wisc.edu/~lempp/papers/list.html | DOI | MR | Zbl