Regularization in the Mosolov and Myasnikov problem with boundary friction
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2009), pp. 10-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an iterative algorithm for solving a semicoercive nonsmooth variational inequality. The algorithm is based on the stepwise partial smoothing of the minimized functional and an iterative proximal regularization method. We obtain a solution to the variational Mosolov and Myasnikov problem with boundary friction as a limit point of the sequence of solutions to stable auxiliary problems.
Keywords: variational inequality, Mosolov and Myasnikov problem, functional, minimization, proximal regularization, finite element method.
@article{IVM_2009_6_a1,
     author = {H. Kim and R. V. Namm and E. M. Vikhtenko and G. Woo},
     title = {Regularization in the {Mosolov} and {Myasnikov} problem with boundary friction},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--19},
     publisher = {mathdoc},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_6_a1/}
}
TY  - JOUR
AU  - H. Kim
AU  - R. V. Namm
AU  - E. M. Vikhtenko
AU  - G. Woo
TI  - Regularization in the Mosolov and Myasnikov problem with boundary friction
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 10
EP  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_6_a1/
LA  - ru
ID  - IVM_2009_6_a1
ER  - 
%0 Journal Article
%A H. Kim
%A R. V. Namm
%A E. M. Vikhtenko
%A G. Woo
%T Regularization in the Mosolov and Myasnikov problem with boundary friction
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 10-19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_6_a1/
%G ru
%F IVM_2009_6_a1
H. Kim; R. V. Namm; E. M. Vikhtenko; G. Woo. Regularization in the Mosolov and Myasnikov problem with boundary friction. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2009), pp. 10-19. http://geodesic.mathdoc.fr/item/IVM_2009_6_a1/

[1] Zolotukhin A. Ya., Namm R. V., Pachina A. V., “Priblizhennoe reshenie variatsionnoi zadachi Mosolova i Myasnikova s treniem na granitse po zakonu Kulona”, Sib. zhurn. vychisl. matem., 4:2 (2001), 163–177 | MR | Zbl

[2] Mosolov P. P., Myasnikov V. P., “O kachestvennykh osobennostyakh techeniya vyazko-plasticheskoi sredy v trubakh”, Zhurn. prikl. matem. i mekhan., 31:3 (1967), 581–585 | MR | Zbl

[3] Schmitt H., “On the regularized Bingham problem”, Lect. Notes Econ. Math. Syst., 452, Springer-Verlag, 1997, 298–314 | MR | Zbl

[4] Vikhtenko E. M., Namm R. V., “O metode resheniya polukoertsitivnykh variatsionnykh neravenstv, osnovannom na metode iterativnoi proksimalnoi regulyarizatsii”, Izv. vuzov. Matematika, 2004, no. 1, 31–35 | MR | Zbl

[5] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981, 416 pp. | MR | Zbl

[6] Zolotukhin A. Ya., Namm R. V., Pachina A. V., “Priblizhennoe reshenie polukoertsitivnoi zadachi Sinorini s neodnorodnym granichnym usloviem”, Zhurn. vychisl. matem. i matem. fiz., 43:3 (2003), 388–398 | MR | Zbl

[7] Namm R. V., Woo G., Introduction to the theory and solution method for variational inequalities, Changwon National University Press, Changwon, 2002

[8] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980, 518 pp. | MR

[9] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979, 574 pp. | MR

[10] Glowinski R., Numerical methods for nonlinear variational problems, Springer, New York, 1984, 493 pp. | MR | Zbl