Regularization in the Mosolov and Myasnikov problem with boundary friction
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2009), pp. 10-19

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an iterative algorithm for solving a semicoercive nonsmooth variational inequality. The algorithm is based on the stepwise partial smoothing of the minimized functional and an iterative proximal regularization method. We obtain a solution to the variational Mosolov and Myasnikov problem with boundary friction as a limit point of the sequence of solutions to stable auxiliary problems.
Keywords: variational inequality, Mosolov and Myasnikov problem, functional, minimization, proximal regularization, finite element method.
@article{IVM_2009_6_a1,
     author = {H. Kim and R. V. Namm and E. M. Vikhtenko and G. Woo},
     title = {Regularization in the {Mosolov} and {Myasnikov} problem with boundary friction},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--19},
     publisher = {mathdoc},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_6_a1/}
}
TY  - JOUR
AU  - H. Kim
AU  - R. V. Namm
AU  - E. M. Vikhtenko
AU  - G. Woo
TI  - Regularization in the Mosolov and Myasnikov problem with boundary friction
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 10
EP  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_6_a1/
LA  - ru
ID  - IVM_2009_6_a1
ER  - 
%0 Journal Article
%A H. Kim
%A R. V. Namm
%A E. M. Vikhtenko
%A G. Woo
%T Regularization in the Mosolov and Myasnikov problem with boundary friction
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 10-19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_6_a1/
%G ru
%F IVM_2009_6_a1
H. Kim; R. V. Namm; E. M. Vikhtenko; G. Woo. Regularization in the Mosolov and Myasnikov problem with boundary friction. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2009), pp. 10-19. http://geodesic.mathdoc.fr/item/IVM_2009_6_a1/