Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2009_5_a5, author = {V. G. Zvyagin and A. V. Kuznetsov}, title = {Optimal control in a~model of the motion of a~viscoelastic medium with objective derivative}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {55--61}, publisher = {mathdoc}, number = {5}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2009_5_a5/} }
TY - JOUR AU - V. G. Zvyagin AU - A. V. Kuznetsov TI - Optimal control in a~model of the motion of a~viscoelastic medium with objective derivative JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 55 EP - 61 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2009_5_a5/ LA - ru ID - IVM_2009_5_a5 ER -
%0 Journal Article %A V. G. Zvyagin %A A. V. Kuznetsov %T Optimal control in a~model of the motion of a~viscoelastic medium with objective derivative %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2009 %P 55-61 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2009_5_a5/ %G ru %F IVM_2009_5_a5
V. G. Zvyagin; A. V. Kuznetsov. Optimal control in a~model of the motion of a~viscoelastic medium with objective derivative. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 55-61. http://geodesic.mathdoc.fr/item/IVM_2009_5_a5/
[1] Astarita Dzh., Marruchchi Dzh., Osnovy gidromekhaniki nenyutonovskikh zhidkostei, Mir, M., 1978, 312 pp.
[2] Fursikov A. V., “Zadachi upravleniya i teoremy, kasayuschiesya odnoznachnoi razreshimosti smeshannoi kraevoi zadachi dlya trekhmernykh uravnenii Nave–Stoksa i Eilera”, Matem. sb., 115(157):2 (1981), 281–306 | MR | Zbl
[3] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981, 408 pp. | MR | Zbl
[4] Gaevskii Kh., Grëger K., Zakharias K. M., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR
[5] Vorotnikov D. A., Zvyagin V. G., “On the existence of weak solutions for the initial-boundary value problem in the Jeffreys model of motion of a viscoelastic medium”, Abstr. Appl. Anal., 2004, no. 10, 815–829 | DOI | MR | Zbl
[6] Simon J., “Compact sets in the space $L_p(0,T;B)$”, Ann. Mat. Pura Appl. Ser. IV, 146 (1987), 65–96 | DOI | MR | Zbl
[7] Guilliope C., Saut J.-C., “Existence results for the flow of viscoelastic fluids with differential constitutive law”, Nonlinear Anal., 15:9 (1990), 849–869 | DOI | MR
[8] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969, 480 pp. | MR
[9] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR