A mixed finite element method for a~shallow shell problem with a~stress function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 13-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem of a deflected mode of a shallow shell. The stress function and the normal component of the displacement of the median surface of the shell are unknown functions. We propose a mixed variational statement of the problem, where the second derivatives of the stress function and the normal component of the displacement of the median surface are additional unknowns. This enables us to construct the finite element approximation of the initial problem. We prove the existence of a unique solution of the approximating problem and estimate the rate of convergence of the discrete solution.
Keywords: shallow shell, mixed finite element method, errors estimates.
@article{IVM_2009_5_a1,
     author = {V. V. Verbitskii and A. V. Verbitskii},
     title = {A mixed finite element method for a~shallow shell problem with a~stress function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {13--22},
     publisher = {mathdoc},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_5_a1/}
}
TY  - JOUR
AU  - V. V. Verbitskii
AU  - A. V. Verbitskii
TI  - A mixed finite element method for a~shallow shell problem with a~stress function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 13
EP  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_5_a1/
LA  - ru
ID  - IVM_2009_5_a1
ER  - 
%0 Journal Article
%A V. V. Verbitskii
%A A. V. Verbitskii
%T A mixed finite element method for a~shallow shell problem with a~stress function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 13-22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_5_a1/
%G ru
%F IVM_2009_5_a1
V. V. Verbitskii; A. V. Verbitskii. A mixed finite element method for a~shallow shell problem with a~stress function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 13-22. http://geodesic.mathdoc.fr/item/IVM_2009_5_a1/

[1] Astrakhantsev G. P., “O smeshannom metode konechnykh elementov v zadachakh teorii obolochek”, Zhurn. vychisl. matem. i matem. fiz., 29:10 (1989), 1492–1504 | MR | Zbl

[2] Verbitskii V. V., “Smeshannyi metod konechnykh elementov v zadache na sobstvennye znacheniya nelineinoi ustoichivosti pologikh obolochek”, Izv. vuzov. Matematika, 1998, no. 11, 22–31 | MR | Zbl

[3] Karchevskii M. M., “O smeshannom metode konechnykh elementov v nelineinoi teorii tonkikh obolochek”, Zhurn. vychisl. matem. i matem. fiz., 38:2 (1998), 324–329 | MR

[4] Maslovskaya L. V., “Skhodimost polusmeshannogo metoda konechnykh elementov dlya osnovnykh kraevykh zadach pologikh obolochek v prostranstvakh Soboleva”, Izv. vuzov. Matematika, 1988, no. 3, 36–43 | MR | Zbl

[5] Maslovskaya L. V., Verbitskii V. V., “Skhodimost smeshannogo metoda konechnykh elementov v zadachakh ustoichivosti pologikh obolochek”, Izv. vuzov. Matematika, 1993, no. 10, 21–31 | MR | Zbl

[6] Filippovich A. P., “Analiz smeshannykh skhem metoda konechnykh elementov v zadachakh o deformatsii pologikh obolochek”, Zhurn. vychisl. matem. i matem. fiz., 28:5 (1988), 741–754 | MR | Zbl

[7] Goldenveizer A. L., Teoriya uprugikh tonkikh obolochek, Nauka, M., 1976, 512 pp. | MR

[8] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989, 376 pp. | MR

[9] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR

[10] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR

[11] Brezzi F., Raviart P. A., “Mixed finite element method for 4th-order elliptic equations”, Topics Numer. Analys., V. III, Acad. Press, New York, 1976, 315–338 | MR

[12] Falk R. S., Osborn J. E., “Error estimates for mixed methods”, RAIRO Numer. Anal., 14:3 (1980), 249–277 | MR | Zbl