Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2009_5_a1, author = {V. V. Verbitskii and A. V. Verbitskii}, title = {A mixed finite element method for a~shallow shell problem with a~stress function}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {13--22}, publisher = {mathdoc}, number = {5}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2009_5_a1/} }
TY - JOUR AU - V. V. Verbitskii AU - A. V. Verbitskii TI - A mixed finite element method for a~shallow shell problem with a~stress function JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 13 EP - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2009_5_a1/ LA - ru ID - IVM_2009_5_a1 ER -
V. V. Verbitskii; A. V. Verbitskii. A mixed finite element method for a~shallow shell problem with a~stress function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 13-22. http://geodesic.mathdoc.fr/item/IVM_2009_5_a1/
[1] Astrakhantsev G. P., “O smeshannom metode konechnykh elementov v zadachakh teorii obolochek”, Zhurn. vychisl. matem. i matem. fiz., 29:10 (1989), 1492–1504 | MR | Zbl
[2] Verbitskii V. V., “Smeshannyi metod konechnykh elementov v zadache na sobstvennye znacheniya nelineinoi ustoichivosti pologikh obolochek”, Izv. vuzov. Matematika, 1998, no. 11, 22–31 | MR | Zbl
[3] Karchevskii M. M., “O smeshannom metode konechnykh elementov v nelineinoi teorii tonkikh obolochek”, Zhurn. vychisl. matem. i matem. fiz., 38:2 (1998), 324–329 | MR
[4] Maslovskaya L. V., “Skhodimost polusmeshannogo metoda konechnykh elementov dlya osnovnykh kraevykh zadach pologikh obolochek v prostranstvakh Soboleva”, Izv. vuzov. Matematika, 1988, no. 3, 36–43 | MR | Zbl
[5] Maslovskaya L. V., Verbitskii V. V., “Skhodimost smeshannogo metoda konechnykh elementov v zadachakh ustoichivosti pologikh obolochek”, Izv. vuzov. Matematika, 1993, no. 10, 21–31 | MR | Zbl
[6] Filippovich A. P., “Analiz smeshannykh skhem metoda konechnykh elementov v zadachakh o deformatsii pologikh obolochek”, Zhurn. vychisl. matem. i matem. fiz., 28:5 (1988), 741–754 | MR | Zbl
[7] Goldenveizer A. L., Teoriya uprugikh tonkikh obolochek, Nauka, M., 1976, 512 pp. | MR
[8] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989, 376 pp. | MR
[9] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR
[10] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR
[11] Brezzi F., Raviart P. A., “Mixed finite element method for 4th-order elliptic equations”, Topics Numer. Analys., V. III, Acad. Press, New York, 1976, 315–338 | MR
[12] Falk R. S., Osborn J. E., “Error estimates for mixed methods”, RAIRO Numer. Anal., 14:3 (1980), 249–277 | MR | Zbl