Regularization of a~three-element functional equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2009), pp. 39-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the three-element functional equation $$ (V\Phi)(z)\equiv\Phi(iz)+\Phi(-iz)+G(z)\Phi\biggl(\frac1z\biggr)=g(z),\qquad z\in R, $$ subject to $$ R\colon\ |z|1,\quad|\arg z|\frac\pi4. $$ We assume that the coefficients $G(z)$ and $g(z)$ are holomorphic in $R$ and their boundary values $G^+(t)$ and $g^+(t)$ belong to $H(\Gamma)$, $G(t)G(t^{-1})=1$. We seek for solutions $\Phi(z)$ in the class of functions holomorphic outside of $\overline R$ such that they vanish at infinity and their boundary values $\Phi^-(t)$ also belong to $H(\Gamma)$. Using the method of equivalent regularization, we reduce the problem to the 2nd kind integral Fredholm equation.
Keywords: functional equation, holomorphic function, regularization method, rotation group of a dihedron.
@article{IVM_2009_4_a4,
     author = {S. A. Modina},
     title = {Regularization of a~three-element functional equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {39--42},
     publisher = {mathdoc},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_4_a4/}
}
TY  - JOUR
AU  - S. A. Modina
TI  - Regularization of a~three-element functional equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 39
EP  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_4_a4/
LA  - ru
ID  - IVM_2009_4_a4
ER  - 
%0 Journal Article
%A S. A. Modina
%T Regularization of a~three-element functional equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 39-42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_4_a4/
%G ru
%F IVM_2009_4_a4
S. A. Modina. Regularization of a~three-element functional equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2009), pp. 39-42. http://geodesic.mathdoc.fr/item/IVM_2009_4_a4/

[1] Garifyanov F. N., Operatory s drobno-lineinymi sdvigami i biortogonalnye ryady, Dis. ... dokt. fiz.-matem. nauk, Ekaterinburg, 1997

[2] Garifyanov F. N., “Biortogonalnye ryady, porozhdennye gruppoi diedra”, Izv. vuzov. Matematika, 2001, no. 4, 11–15 | MR | Zbl

[3] Zverovich E. I., “Metod lokalno-konformnykh skleivanii”, DAN SSSR, 205:4 (1972), 767–770 | Zbl