Regularization of a~three-element functional equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2009), pp. 39-42
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the three-element functional equation
$$
(V\Phi)(z)\equiv\Phi(iz)+\Phi(-iz)+G(z)\Phi\biggl(\frac1z\biggr)=g(z),\qquad z\in R,
$$
subject to
$$
R\colon\ |z|1,\quad|\arg z|\frac\pi4.
$$ We assume that the coefficients $G(z)$ and $g(z)$ are holomorphic in $R$ and their boundary values $G^+(t)$ and $g^+(t)$ belong to $H(\Gamma)$, $G(t)G(t^{-1})=1$. We seek for solutions $\Phi(z)$ in the class of functions holomorphic outside of $\overline R$ such that they vanish at infinity and their boundary values
$\Phi^-(t)$ also belong to $H(\Gamma)$.
Using the method of equivalent regularization, we reduce the problem to the 2nd kind integral Fredholm equation.
Keywords:
functional equation, holomorphic function, regularization method, rotation group of a dihedron.
@article{IVM_2009_4_a4,
author = {S. A. Modina},
title = {Regularization of a~three-element functional equation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {39--42},
publisher = {mathdoc},
number = {4},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_4_a4/}
}
S. A. Modina. Regularization of a~three-element functional equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2009), pp. 39-42. http://geodesic.mathdoc.fr/item/IVM_2009_4_a4/