The penalty method for grid matching in mixed finite element methods
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2009), pp. 37-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Possibility of use of the penalty method of grid matching for mixed finite element methods is proved in the article. Hermann–Johnson scheme for biharmonic equation is considered in the article. The main idea is to build perturbed problem with two parameters, which play roles of penalties. Perturbed problem is built by substituting essential conditions in mixed variational formulation by natural conditions, which contain parameters, on interface. Discretization of perturbed problem by finite element method is made. Estimations of norm of difference between solution of discrete perturbed problem and solution of initial problem, which depend on step and penalty, are derived. Recommendations to choose penalties in dependence on step are given.
Keywords: mixed finite element methods, Hermann–Johnson scheme, penalty method of grid matching, loss of convergence rate.
Mots-clés : convergence rate
@article{IVM_2009_3_a1,
     author = {L. V. Maslovskaya and O. M. Maslovskaya},
     title = {The penalty method for grid matching in mixed finite element methods},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--54},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_3_a1/}
}
TY  - JOUR
AU  - L. V. Maslovskaya
AU  - O. M. Maslovskaya
TI  - The penalty method for grid matching in mixed finite element methods
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 37
EP  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_3_a1/
LA  - ru
ID  - IVM_2009_3_a1
ER  - 
%0 Journal Article
%A L. V. Maslovskaya
%A O. M. Maslovskaya
%T The penalty method for grid matching in mixed finite element methods
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 37-54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_3_a1/
%G ru
%F IVM_2009_3_a1
L. V. Maslovskaya; O. M. Maslovskaya. The penalty method for grid matching in mixed finite element methods. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2009), pp. 37-54. http://geodesic.mathdoc.fr/item/IVM_2009_3_a1/

[1] Babuska I., “Error-bounds for finite element method”, Numer. Math., 16 (1971), 322–333 | DOI | MR | Zbl

[2] Nitsche J. A., “Convergence of nonconforming methods”, Math. aspects of finite elements in partial differential equations, Academic Press, New York, 1974, 15–53 | MR

[3] Becker R., Hansbo P., Stenberg R., “A finite element method for domain decomposition with non-matching grids”, Math. Model. Numer. Anal., 37:212 (2003), 209–225 | DOI | MR | Zbl

[4] Le Tallec P., Sassi T., “Domain decomposition with nonmatching grids: augmented Lagrangian approach”, Math. Comp., 64:212 (1995), 1367–1396 | DOI | MR | Zbl

[5] Babuska I., “The finite element method with penalty”, Math. Comp., 27:122 (1973), 221–228 | DOI | MR | Zbl

[6] Aubin J. P., “Approximation des problems aux limites non homogenes et regularite de la convergence”, Calcolo, 6 (1969), 117–139 | DOI

[7] Maslovskaya L. V., Maslovskaya O. M., “Metod shtrafa dlya stykovki setok v metode konechnykh elementov”, Izv. vuzov. Matematika, 2006, no. 10, 33–43 | MR

[8] Brezzi F., Raviart P. A., “Mixed finite element methods for 4th order elliptic equations”, Topics in Numerical Analysis, Proc. Roy. Irish Acad. Conf., V. III (Trinity Coll., Dublin, 1976), Academic Press, New York, 1977, 33–56 | MR | Zbl

[9] Falk R. S., Osborn J. E., “Error estimates for mixed methods”, RAIRO Anal. numer., 14:3 (1980), 249–277 | MR | Zbl

[10] Maslovskaya L. V., “Povedenie resheniya bigarmonicheskogo uravneniya v oblastyakh s uglovymi tochkami”, Differents. uravneniya, 19:2 (1983), 2172–2175 | MR | Zbl

[11] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, 1-e izd., Mir, M., 1980, 512 pp. | MR

[12] Babuska I., Osborn J., Pitkaranta J., “Analysis of mixed methods using mesh dependent norms”, Math. Comp., 35 (1980), 1039–1062 | DOI | MR | Zbl

[13] Brezzi F., “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers”, RAIRO, 8:R-2 (1974), 129–151 | MR | Zbl