Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2009_2_a0, author = {V. V. Vasin}, title = {Iterative processes of the {Fej\'er} type in ill-posed problems with a~prori information}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--24}, publisher = {mathdoc}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2009_2_a0/} }
V. V. Vasin. Iterative processes of the Fej\'er type in ill-posed problems with a~prori information. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2009), pp. 3-24. http://geodesic.mathdoc.fr/item/IVM_2009_2_a0/
[1] Lavrentev M. M., “Ob integralnykh uravneniyakh pervogo roda”, DAN SSSR, 127:1 (1959), 31–33 | MR
[2] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, Izd-vo SO AN SSSR, Novosibirsk, 1962, 92 pp. | MR
[3] Ivanov V. K., “O lineinykh nekorrektnykh zadachakh”, DAN SSSR, 145:2 (1962), 270–272 | MR | Zbl
[4] Ivanov V. K., “O nekorrektno postavlennykh zadachakh”, Matem. sb., 61(103):2 (1963), 211–223 | MR | Zbl
[5] Tikhonov A. N., “O regulyarizatsii nekorrektno postavlennykh zadach”, DAN SSSR, 153:1 (1963), 49–52 | MR | Zbl
[6] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, DAN SSSR, 151:3 (1963), 501–504 | MR | Zbl
[7] Tikhonov A. N., “Ob ustoichivosti obratnykh zadach”, DAN SSSR, 39:5 (1944), 195–198
[8] Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Yagola A. G., Regulyarizuyuschie algoritmy i apriornaya informatsiya, Nauka, M., 1983, 198 pp. | MR | Zbl
[9] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, UIF Nauka, Ekaterinburg, 1993, 263 pp. | MR
[10] Morozov V. A., Goldman N. P., Samarin M. K., “Metod deskriptivnoi regulyarizatsii i kachestvo priblizhennykh reshenii”, Inzh. fiz. zhurn., 38:6 (1977), 117–121
[11] Tikhonov A. N., Vasilev F. P., “Metody resheniya nekorrektnykh ekstremalnykh zadach”, Math. models and numerical methods, Banach center publ., 3, Warszava, 1978, 297–342 | MR | Zbl
[12] Acar R., Vogel C. R., “Analysis of bounded variation penalty method for ill-posed problems”, Inverse Problems, 10 (1994), 1217–1229 | DOI | MR | Zbl
[13] Chavent E., Kunish K., “Regularization of linear least squares problems by total bounded variation control”, Optimization and calculus of variations, 2 (1997), 359–376 | DOI | MR | Zbl
[14] Vogel C. R., Computational methods for inverse problems, SIAM, Philadelphia, 2002, 183 pp. | MR | Zbl
[15] Vasin V. V., “Iteratsionnye metody resheniya nekorrektnykh zadach s apriornoi informatsiei v gilbertovykh prostranstvakh”, Zhurn. vychisl. matem. i matem. fiz., 28:7 (1988), 971–980 | MR | Zbl
[16] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa. Teoriya i prilozheniya, In-t kompyut. issled., RKhD, Moskva–Izhevsk, 2005, 199 pp.
[17] Vinokurov V. A., “Ob odnom neobkhodimom uslovii regulyarizuemosti po Tikhonovu”, DAN SSSR, 195:3 (1970), 530–531 | MR | Zbl
[18] Menikhes L. D., “O regulyarizuemosti otobrazhenii, obratnykh k integralnym operatoram”, DAN SSSR, 241:2 (1978), 625–629 | MR
[19] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 128 pp. | MR
[20] Vasin V. V., Proksimalnyi algoritm s proektirovaniem v zadachakh vypuklogo programmirovaniya, Preprint, AN SSSR. Uralsk. nauchn. tsentr, In-t matem. i mekhan., Sverdlovsk, 1982, 47 pp.
[21] Eremin I. I., “Obobschenie relaksatsionnogo metoda Motskina–Agmona”, UMN, 20:2 (1965), 183–187 | MR | Zbl
[22] Eremin I. I., “O sistemakh neravenstv s vypuklymi funktsiyami v levykh chastyakh”, Izv. AN SSSR. Ser. matem., 30:2 (1966), 265–278 | MR | Zbl
[23] Eremin I. I., “Metody feierovskikh priblizhenii v vypuklom programmirovanii”, Matem. zametki, 3:2 (1968), 217–234 | MR
[24] Moreau J. J., “Proximite et dualite dans un espace Hilbertien”, Bull. Soc. Math. France, 93:2 (1965), 273–299 | MR | Zbl
[25] Martinet B., “Determination approachee d'un point fixe d'une application pseudo-contractante. Cas de l'application prox”, C. R. Acad. Sci. Paris Ser. A–B, 274 (1972), A163–A165 | MR
[26] Maruster S., “Quasi-nonexpansivity and two classical methods for solving nonlinear equations”, Proc. Amer. Math. Soc., 62:1 (1977), 119–123 | DOI | MR | Zbl
[27] Vasin V. V., Diskretizatsiya, iteratsionno-approksimatsionnye algoritmy resheniya neustoichivykh zadach i ikh prilozheniya, Dis. $\dots$ dokt. fiz.-matem. nauk, VTs SO RAN, Novosibirsk, 1985
[28] Fejér L., “Über die Lage der Nullstellen von Polynomen, die aus Minimumforderungen gewisser Art entspringen”, Math. Ann., 85:1 (1922), 41–48 | DOI | MR | Zbl
[29] Motzkin T. S., Schoenberg J. J., “The relaxation method for linear inequalities”, Canad. J. Math., 6:3 (1954), 393–404 | MR | Zbl
[30] Kaczmarz S., “Angenaherte Auflosung von Systemen linearer Gleichungen”, Bull. Inst. Acad. Pol. Sci. Leet., 35:4 (1937), 355–357
[31] Genel A., Lindenstrauss L., “An example concerning fixed point”, Israel J. Math., 22:1 (1975), 81–86 | DOI | MR | Zbl
[32] Rockafellar R. T., “Monotone operators and the proximal point algorithm”, SIAM J. Control and Optim., 14:5 (1976), 877–898 | DOI | MR | Zbl
[33] Halperin B., “Fixed points of nonexpansive maps”, Bull. Amer. Math. Soc., 73:6 (1967), 957–961 | DOI | MR
[34] Neubauer A., Scherzer O. A., “A convergence rate results for a steepest desceut method and minimal error method for the solution of nonlinear ill-posed problems”, J. Anal. Appl., 14:2 (1995), 369–378 | MR
[35] Scherzer O., “Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems”, J. Math. Anal. Appl., 194 (1995), 911–933 | DOI | MR | Zbl
[36] Engl H. W., Hanke M., Neubauer A., Regularization of inverse problems, Kluwer Acad. Publ., Dordrecht ets., 1996, 321 pp. | MR | Zbl
[37] Gilyazov S. F., Gol'dman N. L., Regularization of ill-posed problems by iteration methods, Kluwer Acad. Publ., Dordrecht ets., 2000, 340 pp. | MR | Zbl
[38] Kabanikhin S. I., Kowar R., Scherzer O., “On the Landweber iteration for the solution of a parameter identification problem in a hyperbolic partial differential equation of second order”, J. inv. ill-posed problems, 6:5 (1998), 403–430 | MR | Zbl
[39] Ageev A. L., Babanov Yu. A., Vasin V. V., Ershov N. V., “Postroenie regulyarizuyuschikh algoritmov po opredeleniyu struktury amorfnykh tel metodom rentgenospektralnogo strukturnogo analiza”, Chislennye i analitich. metody resheniya zadach mekhan. sploshnoi sredy, Sverdlovsk, 1981, 3–25 | MR | Zbl
[40] Ageev A. L., Vasin V. V., Bessonova E. N., Markushevich V. M., “Radiozondirovanie atmosfery na dvukh chastotakh. Algoritmicheskii analiz integralnogo uravneniya Fredgolma–Stiltesa”, Teor. problemy v geofizike, Vychisl. seismologiya, 29, Nauka, M., 1997, 100–118
[41] Giusti E., Minimal surfaces and functions of bounded variation, Birkhäuser, Basel, 1984, 240 pp. | MR | Zbl
[42] Vasin V. V., “Regularization and iterative approximation for linear ill-posed problems in the space of functions of bounded variation”, Proc. Stekl. Inst. Math., Suppl. 1 (2002), S225–S229 | MR
[43] Vasin V. V., Serezhnikova T. I., “Dvukhetapnyi metod approksimatsii negladkikh reshenii i vosstanovlenie zashumlennogo izobrazheniya”, Avtomatika i telemekhan., 2004, no. 3, 392–402
[44] Leonov A. S., “Kusochno-ravnomernaya regulyarizatsiya dvumernykh nekorrektnykh zadach s razryvnymi resheniyami: chislennyi analiz”, Zhurn. vychisl. matem. i matem. fiz., 39:12 (1999), 1939–1944 | MR
[45] Vasin V. V., Gribanov K. G., Zakharov V. I. et al., “Regular methods of solution of ill-posed problems for remote sensing of Earth atmosphere using high-resolution spectrometry”, Proc. SPIE, V. 6580 (Dec. 12, 2006), 2006, 65800T
[46] Gribanov K. G., Zakharov V. I., Vasin V. V., “Iterativnaya regulyarizatsiya v zadache opredeleniya $\mathrm{CO}_2$ v atmosfere po dannym sputnikovogo zondirovaniya”, Tez. dokl. Mezhdun. konf. “Algoritmicheskii analiz neustoichivykh zadach” (01–06 sent. 2008, Ekaterinburg), 119–120