Optimization for nonlinear hyperbolic equations without the uniqueness theorem for a~solution of the boundary-value problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2009), pp. 76-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the optimal control problem for a system governed by a nonlinear hyperbolic equation without any constraints on the parameter of nonlinearity. No uniqueness theorem is established for a solution to this problem. The control-state mapping of this system is not Gateaux differentiable. We study an approximate solution of the optimal control problem by means of the penalty method.
Keywords: optimal control, hyperbolic equation, penalty method, approximate solution.
@article{IVM_2009_1_a3,
     author = {S. Ya. Serovaǐskiǐ},
     title = {Optimization for nonlinear hyperbolic equations without the uniqueness theorem for a~solution of the boundary-value problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--83},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_1_a3/}
}
TY  - JOUR
AU  - S. Ya. Serovaǐskiǐ
TI  - Optimization for nonlinear hyperbolic equations without the uniqueness theorem for a~solution of the boundary-value problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 76
EP  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_1_a3/
LA  - ru
ID  - IVM_2009_1_a3
ER  - 
%0 Journal Article
%A S. Ya. Serovaǐskiǐ
%T Optimization for nonlinear hyperbolic equations without the uniqueness theorem for a~solution of the boundary-value problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 76-83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_1_a3/
%G ru
%F IVM_2009_1_a3
S. Ya. Serovaǐskiǐ. Optimization for nonlinear hyperbolic equations without the uniqueness theorem for a~solution of the boundary-value problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2009), pp. 76-83. http://geodesic.mathdoc.fr/item/IVM_2009_1_a3/

[1] Plotnikov V. I., Sumin V. I., “Optimizatsiya ob'ektov s raspredelennymi parametrami, opisyvaemykh sistemami Gursa–Darbu”, Zhurn. vychisl. matem. i matem. fiz., 12:1 (1972), 61–77 | MR | Zbl

[2] Suryanarayana M. B., “Necessary conditions for optimal problems with hyperbolic partial differential equations”, SIAM J. Control, 11:1 (1973), 130–147 | DOI | MR | Zbl

[3] Matveev A. S., Yakubovich V. A., “Optimalnoe upravlenie nekotorymi sistemami s raspredelennymi parametrami”, Sib. matem. zhurn., 19:5 (1978), 1109–1140 | MR | Zbl

[4] Tiba D., “Optimality conditions for nonlinear distributed control problems”, Decision and Control, Proc. 22 IEEE Conf., Dec. Contr., New York, 1983, 1251–1252

[5] Brokate M., Necessary optimality conditions for the control of semilinear hyperbolic boundary value problems, Preprint 54, Univ. Augsburg, 1985 | MR

[6] Tiba D., “Optimality conditions for distributed control problems with nonlinear state equation”, SIAM J. Contr. Optim., 23:1 (1985), 85–110 | DOI | MR | Zbl

[7] Brokate M., “Necessary optimality conditions for the control of semilinear hyperbolic boundary value problems”, SIAM J. Contr. Optim., 25:5 (1987), 1353–1369 | DOI | MR | Zbl

[8] Ha J., Nakagiri S., “Optimal control problem for nonlinear hyperbolic distributed parameter systems with damping terms”, Funct. Equat., 47:1 (2004), 1–23 | MR | Zbl

[9] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987, 368 pp. | MR

[10] Tiba D., “Optimal control for second order semilinear hyperbolic equations”, Contr. Theory Adv. Techn., 3:1 (1987), 33–46 | MR

[11] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 352 pp. | Zbl

[12] Serovaiskii S. Ya., “Priblizhennoe reshenie optimizatsionnykh zadach dlya singulyarnykh beskonechnomernykh sistem”, Sib. matem. zhurn., 44:3 (2003), 660–673 | MR | Zbl

[13] Serovaiskii S. Ya., “Priblizhennoe reshenie singulyarnykh optimizatsionnykh zadach”, Matem. zametki, 74:5 (2003), 728–738 | MR | Zbl

[14] Serovaiskii S. Ya., “Priblizhennoe reshenie zadachi optimalnogo upravleniya dlya singulyarnogo uravneniya ellipticheskogo tipa s negladkoi nelineinostyu”, Izv. vuzov. Matematika, 2004, no. 1, 80–86 | MR | Zbl

[15] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR | Zbl

[16] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981, 400 pp. | MR

[17] Zolezzi T., “A characterizations of well-posed optimal control systems”, SIAM J. Control, 19:5 (1981), 604–616 | DOI | MR | Zbl

[18] Gaevskii Kh., Grëger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1977, 336 pp. | MR

[19] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 416 pp. | MR | Zbl

[20] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 742 pp. | MR | Zbl