Optimization for nonlinear hyperbolic equations without the uniqueness theorem for a~solution of the boundary-value problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2009), pp. 76-83

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the optimal control problem for a system governed by a nonlinear hyperbolic equation without any constraints on the parameter of nonlinearity. No uniqueness theorem is established for a solution to this problem. The control-state mapping of this system is not Gateaux differentiable. We study an approximate solution of the optimal control problem by means of the penalty method.
Keywords: optimal control, hyperbolic equation, penalty method, approximate solution.
@article{IVM_2009_1_a3,
     author = {S. Ya. Serovaǐskiǐ},
     title = {Optimization for nonlinear hyperbolic equations without the uniqueness theorem for a~solution of the boundary-value problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--83},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_1_a3/}
}
TY  - JOUR
AU  - S. Ya. Serovaǐskiǐ
TI  - Optimization for nonlinear hyperbolic equations without the uniqueness theorem for a~solution of the boundary-value problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 76
EP  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_1_a3/
LA  - ru
ID  - IVM_2009_1_a3
ER  - 
%0 Journal Article
%A S. Ya. Serovaǐskiǐ
%T Optimization for nonlinear hyperbolic equations without the uniqueness theorem for a~solution of the boundary-value problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 76-83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_1_a3/
%G ru
%F IVM_2009_1_a3
S. Ya. Serovaǐskiǐ. Optimization for nonlinear hyperbolic equations without the uniqueness theorem for a~solution of the boundary-value problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2009), pp. 76-83. http://geodesic.mathdoc.fr/item/IVM_2009_1_a3/