Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2009_12_a6, author = {S. I. Tarasova}, title = {The closure of the sheaf of trajectories of a~linear control system with integral constraints}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {59--68}, publisher = {mathdoc}, number = {12}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2009_12_a6/} }
TY - JOUR AU - S. I. Tarasova TI - The closure of the sheaf of trajectories of a~linear control system with integral constraints JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 59 EP - 68 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2009_12_a6/ LA - ru ID - IVM_2009_12_a6 ER -
S. I. Tarasova. The closure of the sheaf of trajectories of a~linear control system with integral constraints. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 59-68. http://geodesic.mathdoc.fr/item/IVM_2009_12_a6/
[1] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer, Dordrecht, 2002, 408 pp. | MR | Zbl
[2] Chentsov A. G., “Nesekventsialnye priblizhennye resheniya v abstraktnykh zadachakh upravleniya”, Tr. mezhdunar. seminara “Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, T. 1, Uralskii un-t, Ekaterinburg, 2006, 48–60 | MR
[3] Chentsov A. G., “Nesekventsialnye priblizhennye resheniya v abstraktnykh zadachakh o dostizhimosti”, Tr. In-ta matem. i mekhan. UrO RAN, 12, 2006, 216–241
[4] Chentsov A. G., Konechno-additivnye mery i relaksatsii ekstremalnykh zadach, Nauka, Ekaterinburg, 1993, 232 pp.
[5] Chentsov A. G., Asymptotic attainability, Kluwer, Dordrecht, 1997, 322 pp. | MR | Zbl
[6] Serov V. P., Chentsov A. G., “Ob odnoi konstruktsii rasshireniya zadachi upravleniya s integralnymi ogranicheniyami”, Differents. uravneniya, 26:4 (1990), 607–618 | MR | Zbl
[7] Chentsov A. G., Kashirtseva T. Yu., “Obobschennye traektorii lineinykh upravlyaemykh sistem s razryvnymi koeffitsientami pri upravlenii”, Vestn. Chelyabinsk. un-ta. Ser. 3. Matem., mekhan, informatika, 1999, no. 2, 137–146 | MR
[8] Morina S. I., Chentsov A. G., “K voprosu o rasshirenii odnoi zadachi upravleniya s ogranicheniyami na energoresurs i fazovymi ogranicheniyami po chasti koordinat”, Izv. RAN. Teoriya i sistemy upravleniya, 2004, no. 1, 39–48 | MR | Zbl
[9] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1968, 431 pp.
[10] Miller B. M., Rubinovich E. A., Optimizatsiya dinamicheskikh sistem s impulsnymi upravleniyami, Nauka, M., 2005, 429 pp.
[11] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl
[12] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, In. lit., M., 1962, 895 pp.
[13] Melentsov A. A., Baidosov V. A., Zmeev G. M., Elementy teorii mery i integrala, Uchebnoe posobie, Uralsk. gos. un-t, Sverdlovsk, 1980, 100 pp. | Zbl
[14] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR
[15] Morina S. I., “O rasshirenii lineinoi zadachi upravleniya s fazovymi ogranicheniyami”, Differents. uravneniya, 41:4 (2005), 490–499 | MR | Zbl
[16] Bhaskara Rao K. P. S., Bhaskara Rao M., Theory of charges. A study of finitely additive measures, Acad. Press, New York, 1983, 253 pp. | MR | Zbl
[17] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR
[18] Sesekin A. N., “O svyaznosti mnozhestva razryvnykh reshenii nelineinoi dinamicheskoi sistemy s impulsnym upravleniem”, Izv. vuzov. Matematika, 1996, no. 11, 85–93 | MR | Zbl