The closure of the sheaf of trajectories of a~linear control system with integral constraints
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 59-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear system with discontinuous coefficients controlled by a parameter under an integral constraint imposed on the control resource. It is well known that in such problems the closure of the sheaf of trajectories that correspond to ordinary controls (piecewise constant or measurable functions) coincides with the sheaf of trajectories in a generalized problem, where for generalized controls one uses finite additive measures of bounded variation. Therewith the closure is defined in the topology of the pointwise convergence, because the limit elements (the generalized trajectories) may be discontinuous functions. In this paper we prove that any generalized trajectory can be approximated by a sequence of ordinary solutions to the initial system. We propose a concrete technique for constructing such sequences.
Keywords: control system, generalized problem, finite additive measures.
@article{IVM_2009_12_a6,
     author = {S. I. Tarasova},
     title = {The closure of the sheaf of trajectories of a~linear control system with integral constraints},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--68},
     publisher = {mathdoc},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_12_a6/}
}
TY  - JOUR
AU  - S. I. Tarasova
TI  - The closure of the sheaf of trajectories of a~linear control system with integral constraints
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 59
EP  - 68
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_12_a6/
LA  - ru
ID  - IVM_2009_12_a6
ER  - 
%0 Journal Article
%A S. I. Tarasova
%T The closure of the sheaf of trajectories of a~linear control system with integral constraints
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 59-68
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_12_a6/
%G ru
%F IVM_2009_12_a6
S. I. Tarasova. The closure of the sheaf of trajectories of a~linear control system with integral constraints. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 59-68. http://geodesic.mathdoc.fr/item/IVM_2009_12_a6/

[1] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer, Dordrecht, 2002, 408 pp. | MR | Zbl

[2] Chentsov A. G., “Nesekventsialnye priblizhennye resheniya v abstraktnykh zadachakh upravleniya”, Tr. mezhdunar. seminara “Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, T. 1, Uralskii un-t, Ekaterinburg, 2006, 48–60 | MR

[3] Chentsov A. G., “Nesekventsialnye priblizhennye resheniya v abstraktnykh zadachakh o dostizhimosti”, Tr. In-ta matem. i mekhan. UrO RAN, 12, 2006, 216–241

[4] Chentsov A. G., Konechno-additivnye mery i relaksatsii ekstremalnykh zadach, Nauka, Ekaterinburg, 1993, 232 pp.

[5] Chentsov A. G., Asymptotic attainability, Kluwer, Dordrecht, 1997, 322 pp. | MR | Zbl

[6] Serov V. P., Chentsov A. G., “Ob odnoi konstruktsii rasshireniya zadachi upravleniya s integralnymi ogranicheniyami”, Differents. uravneniya, 26:4 (1990), 607–618 | MR | Zbl

[7] Chentsov A. G., Kashirtseva T. Yu., “Obobschennye traektorii lineinykh upravlyaemykh sistem s razryvnymi koeffitsientami pri upravlenii”, Vestn. Chelyabinsk. un-ta. Ser. 3. Matem., mekhan, informatika, 1999, no. 2, 137–146 | MR

[8] Morina S. I., Chentsov A. G., “K voprosu o rasshirenii odnoi zadachi upravleniya s ogranicheniyami na energoresurs i fazovymi ogranicheniyami po chasti koordinat”, Izv. RAN. Teoriya i sistemy upravleniya, 2004, no. 1, 39–48 | MR | Zbl

[9] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1968, 431 pp.

[10] Miller B. M., Rubinovich E. A., Optimizatsiya dinamicheskikh sistem s impulsnymi upravleniyami, Nauka, M., 2005, 429 pp.

[11] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl

[12] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, In. lit., M., 1962, 895 pp.

[13] Melentsov A. A., Baidosov V. A., Zmeev G. M., Elementy teorii mery i integrala, Uchebnoe posobie, Uralsk. gos. un-t, Sverdlovsk, 1980, 100 pp. | Zbl

[14] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[15] Morina S. I., “O rasshirenii lineinoi zadachi upravleniya s fazovymi ogranicheniyami”, Differents. uravneniya, 41:4 (2005), 490–499 | MR | Zbl

[16] Bhaskara Rao K. P. S., Bhaskara Rao M., Theory of charges. A study of finitely additive measures, Acad. Press, New York, 1983, 253 pp. | MR | Zbl

[17] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[18] Sesekin A. N., “O svyaznosti mnozhestva razryvnykh reshenii nelineinoi dinamicheskoi sistemy s impulsnym upravleniem”, Izv. vuzov. Matematika, 1996, no. 11, 85–93 | MR | Zbl